Abstract
Consider CRT-RSA with the parameters p, q, e, d p , d q , where p, q are secret primes, e is the public encryption exponent and d p , d q are the private decryption exponents. We present an efficient method to select CRT-RSA parameters in such a manner so that the decryption becomes faster for small encryption exponents. This is the most frequently used situation for application of RSA in commercial domain. Our idea is to choose e and the factors (with low Hamming weight) of d p , d q first and then applying the extended Euclidean algorithm, we obtain p, q of same bit size. For small e, we get an asymptotic reduction of the order of \({{1}\over{3}}\) in the decryption time compared to standard CRT-RSA parameters for large N = pq. In case of practical parameters, with 1024 bits N and e = 216 + 1, we achieve a reduction of more than 27%. Extensive security analysis is presented for our selected parameters and benchmark examples are also provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)
Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)
Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS 46(2), 203–213 (1999)
Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N 0.292. IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)
Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
Coppersmith, D.: Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)
Durfee, G., Nguyen, P.: Cryptanalysis of the RSA schemes with short secret exponents from Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 14–29. Springer, Heidelberg (2000)
Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)
Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer, Heidelberg (2005)
Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA, http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf
Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than N 0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007)
Lenstra, A.: Generating RSA moduli with a predetermined portion. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg (1998)
Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)
May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)
Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronic Letters 18, 905–907 (1982)
Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of ACM 21(2), 158–164 (1978)
Stinson, D.R.: Some baby-step-giant-step algorithms for the low Hamming weight discrete logarithm problem. Math. Comp. 71(237), 379–391 (2001)
Stinson, D.R.: Cryptography - Theory and Practice, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)
Sun, H.M., Yang, C.T.: RSA with Balanced Short Exponents and Its Application to Entity Authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 199–215. Springer, Heidelberg (2005)
Sun, H.-M., Wu, M.-E.: Design of Rebalanced RSA-CRT for Fast Encryption. In: Proceedings of Information Security Conference, pp. 16–27 (2005), http://eprint.iacr.org/2005/053
Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the Design of Rebalanced RSA-CRT, http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf
Verheul, E., van Tilborg, H.: Cryptanalysis of less short RSA secret exponents. Applicable Algebra in Engineering, Communication and Computing 18, 425–435 (1997)
de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Communication and Computing 13, 17–28 (2002)
Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maitra, S., Sarkar, S. (2010). Efficient CRT-RSA Decryption for Small Encryption Exponents. In: Pieprzyk, J. (eds) Topics in Cryptology - CT-RSA 2010. CT-RSA 2010. Lecture Notes in Computer Science, vol 5985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11925-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-11925-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11924-8
Online ISBN: 978-3-642-11925-5
eBook Packages: Computer ScienceComputer Science (R0)