Abstract
Exposure of a secret key is a significant threat in practice. As a notion of security against key exposure, Dodis et al. advocated key-insulated security, and proposed concrete key-insulated encryption (KIE) schemes in which secret keys are periodically updated by using a physically “insulated” helper key. For significantly reducing possibility of exposure of the helper key, Hanaoka et al. further proposed the notion of parallel KIE (PKIE) in which multiple helper keys are used in alternate shifts. They also pointed out that in contrast to the case of the standard KIE, PKIE cannot be straightforwardly obtained from identity-based encryption (IBE). In this paper, we clarify that PKIE can be generically constructed by using a new primitive which we call one-time forward secure public key encryption (OTFS-PKE) and show that it is possible to construct OTFS-PKE from arbitrary IBE or hierarchical IBE (without degenerating into IBE). By using our method, we can obtain various new PKIE schemes which yield desirable properties. For example, we can construct first PKIE schemes from lattice or quadratic residuosity problems (without using bilinear maps), and PKIE with short ciphertexts and cheaper computational cost for both encryption and decryption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, R.: Two remarks on public-key cryptology (1997), http://www.cl.cam.ac.uk/users/rja14/ (invited lecture)
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)
Bellare, M., Palacio, A.: Protecting against key-exposure: strongly key-insulated encryption with optimal threshold. Appl. Algebra Eng. Commun. Comput. 16(6), 379–396 (2006)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)
Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)
Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)
Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657. IEEE Computer Society, Los Alamitos (2007)
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)
Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009), http://eprint.iacr.org/
Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)
Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)
Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC, pp. 542–552. ACM, New York (1991)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM, New York (2008)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Hanaoka, G., Hanaoka, Y., Imai, H.: Parallel key-insulated public key encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 105–122. Springer, Heidelberg (2006)
Hanaoka, G., Nishioka, T., Zheng, Y., Imai, H.: A hierarchical non-interactive key-sharing scheme with low memory size and high resistance against collusion attacks. Comput. J. 45(3), 293–303 (2002)
Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)
Itkis, G., Reyzin, L.: Sibir: Signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)
Katz, J.: A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report 2002/060 (2009), http://eprint.iacr.org/
Libert, B., Quisquater, J.-J., Yung, M.: Parallel key-insulated public key encryption without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 298–314. Springer, Heidelberg (2007)
Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/
Phan, T.L.A., Hanaoka, Y., Hanaoka, G., Matsuura, K., Imai, H.: Reducing the spread of damage of key exposures in key-insulated encryption. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 366–384. Springer, Heidelberg (2006)
Pippenger, N.: On the evaluation of powers and related problems. In: SFCS 1976: Proceedings of the 17th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 258–263. IEEE Computer Society, Los Alamitos (1976)
Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)
Weng, J., Liu, S., Chen, K., Ma, C.: Identity-based parallel key-insulated encryption without random oracles: Security notions and construction. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 409–423. Springer, Heidelberg (2006)
Weng, J., Liu, S., Chen, K., Zheng, D., Qiu, W.: Identity-based threshold key-insulated encryption without random oracles. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 203–220. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hanaoka, G., Weng, J. (2010). Generic Constructions of Parallel Key-Insulated Encryption. In: Garay, J.A., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2010. Lecture Notes in Computer Science, vol 6280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15317-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-15317-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15316-7
Online ISBN: 978-3-642-15317-4
eBook Packages: Computer ScienceComputer Science (R0)