Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generic Constructions of Parallel Key-Insulated Encryption

  • Conference paper
Security and Cryptography for Networks (SCN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6280))

Included in the following conference series:

  • 1594 Accesses

Abstract

Exposure of a secret key is a significant threat in practice. As a notion of security against key exposure, Dodis et al. advocated key-insulated security, and proposed concrete key-insulated encryption (KIE) schemes in which secret keys are periodically updated by using a physically “insulated” helper key. For significantly reducing possibility of exposure of the helper key, Hanaoka et al. further proposed the notion of parallel KIE (PKIE) in which multiple helper keys are used in alternate shifts. They also pointed out that in contrast to the case of the standard KIE, PKIE cannot be straightforwardly obtained from identity-based encryption (IBE). In this paper, we clarify that PKIE can be generically constructed by using a new primitive which we call one-time forward secure public key encryption (OTFS-PKE) and show that it is possible to construct OTFS-PKE from arbitrary IBE or hierarchical IBE (without degenerating into IBE). By using our method, we can obtain various new PKIE schemes which yield desirable properties. For example, we can construct first PKIE schemes from lattice or quadratic residuosity problems (without using bilinear maps), and PKIE with short ciphertexts and cheaper computational cost for both encryption and decryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, R.: Two remarks on public-key cryptology (1997), http://www.cl.cam.ac.uk/users/rja14/ (invited lecture)

  2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Google Scholar 

  3. Bellare, M., Palacio, A.: Protecting against key-exposure: strongly key-insulated encryption with optimal threshold. Appl. Algebra Eng. Commun. Comput. 16(6), 379–396 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  5. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009), http://eprint.iacr.org/

  11. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC, pp. 542–552. ACM, New York (1991)

    Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM, New York (2008)

    Google Scholar 

  16. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hanaoka, G., Hanaoka, Y., Imai, H.: Parallel key-insulated public key encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 105–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Hanaoka, G., Nishioka, T., Zheng, Y., Imai, H.: A hierarchical non-interactive key-sharing scheme with low memory size and high resistance against collusion attacks. Comput. J. 45(3), 293–303 (2002)

    Article  MATH  Google Scholar 

  19. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Itkis, G., Reyzin, L.: Sibir: Signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Katz, J.: A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report 2002/060 (2009), http://eprint.iacr.org/

  22. Libert, B., Quisquater, J.-J., Yung, M.: Parallel key-insulated public key encryption without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 298–314. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/

  24. Phan, T.L.A., Hanaoka, Y., Hanaoka, G., Matsuura, K., Imai, H.: Reducing the spread of damage of key exposures in key-insulated encryption. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 366–384. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Pippenger, N.: On the evaluation of powers and related problems. In: SFCS 1976: Proceedings of the 17th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 258–263. IEEE Computer Society, Los Alamitos (1976)

    Chapter  Google Scholar 

  26. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)

    Google Scholar 

  28. Weng, J., Liu, S., Chen, K., Ma, C.: Identity-based parallel key-insulated encryption without random oracles: Security notions and construction. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 409–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Weng, J., Liu, S., Chen, K., Zheng, D., Qiu, W.: Identity-based threshold key-insulated encryption without random oracles. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 203–220. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanaoka, G., Weng, J. (2010). Generic Constructions of Parallel Key-Insulated Encryption. In: Garay, J.A., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2010. Lecture Notes in Computer Science, vol 6280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15317-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15317-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15316-7

  • Online ISBN: 978-3-642-15317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics