Abstract
The environment surrounding us is inevitably uncertain; we cannot perceive all the information necessary for making optimal decision. Even in such a partially observable environment, humans can make appropriate decision by resolving the uncertainty. During decision making in an uncertain environment, resolving behaviors of the uncertainty and optimal behaviors to best suit for the environment are often incompatible, which is termed exploration-exploitation dilemma in the field of machine learning. To examine how we cope with the exploration-exploitation dilemma, in this study, we performed statistical modeling of human behaviors when performing a partially observable maze navigation task; in particular, we devised a hidden Markov model (HMM), which incorporates inference of a hidden variable in the environment and switching between exploration and exploitation. Our HMM-based model well reproduced the human behaviors, suggesting the human subjects actually performed exploration and exploitation to effectively adapt to this uncertain environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Paulus, M.P., Hozack, N., Zauscher, B., McDowell, J.E., Frank, L., Brown, G.G., Braff, D.L.: Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. NeuroImage 13, 91–100 (2001)
Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and the brain. Cognitive, Affective, and Behavioral Neuroscience 8, 429–453 (2008)
Daw, N.D., Doya, K.: The computational neurobiology of learning and reward. Current Opinion in Neurobiology 16, 199–204 (2006); Cognitive neuroscience
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)
Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)
Yoshida, W., Ishii, S.: Resolution of uncertainty in prefrontal cortex. Neuron 50, 781–789 (2006)
Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006)
Kitagawa, G., Sato, S.: Monte carlo smoothing and self-organising state space model. In: Doucet, A., Freitas, N.D., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 177–195. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adomi, M., Shikauchi, Y., Ishii, S. (2010). Hidden Markov Model for Human Decision Process in a Partially Observable Environment. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-15822-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15821-6
Online ISBN: 978-3-642-15822-3
eBook Packages: Computer ScienceComputer Science (R0)