Abstract
Although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications such as communications. In this work, we focus our attention on the complex gaussian kernel and its possible application in the complex Kernel LMS algorithm. In order to derive the gradients needed to develop the complex kernel LMS (CKLMS), we employ the powerful tool of Wirtinger’s Calculus, which has recently attracted much attention in the signal processing community. Writinger’s calculus simplifies computations and offers an elegant tool for treating complex signals. To this end, the notion of Writinger’s calculus is extended to include complex RKHSs. Experiments verify that the CKLMS offers significant performance improvements over the traditional complex LMS or Widely Linear complex LMS (WL-LMS) algorithms, when dealing with nonlinearities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, London (2009)
Liu, W., Pokharel, P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Sign. Proc. 56(2), 543–554 (2008)
Kivinen, J., Smola, A., Williamson, R.C.: Online learning with kernels. IEEE Trans. Sign. Proc. 52(8), 2165–2176 (2004)
Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Sign. Proc. 52(8) (2004)
Slavakis, K., Theodoridis, S., Yamada, I.: On line classification using kernels and projection based adaptive algorithm. IEEE Trans. Signal Process. 56(7), 2781–2797 (2008)
Slavakis, K., Theodoridis, S., Yamada, I.: Adaptive constrained learning in reproducing kernel hilbert spaces: The robust beamforming case. IEEE Trans. Signal Process. 57(12), 4744–4764 (2009)
Kim, K., Franz, M.O., Scholkopf, B.: Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1351–1366 (2005)
Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. (to appear)
Smola, A.J., Schölkopf, B., Muller, K.R.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)
Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognition 41(1), 176–190 (2008)
Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering. Wiley, Chichester (2010)
Wirtinger, W.: Zur formalen theorie der functionen von mehr complexen veränderlichen. Math. Ann. 97, 357–375 (1927)
Picinbono, B., Chevalier, P.: Widely linear estimation with complex data. IEEE Trans. Signal Process. 43(8), 2030–2033 (1995)
Adali, T., Li, H.: Complex-valued adaptive signal processing. In: Adali, T., Haykin, S. (eds.) Adaptive Signal Processing: Next Generation Solutions. Wiley, Hoboken (2010)
Adali, T., Li, H., Novey, M., Cardoso, J.F.: Complex ICA using nonlinear functions. IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)
Mattera, D., Paura, L., Sterle, F.: Widely linear decision-feedback equalizer for time-dispersive linear MIMO channels. IEEE Trans. Signal Process. 53(7), 2525–2536 (2005)
Navarro-Moreno, J.: ARMA prediction of widely linear systems by using the innovations algorithm. IEEE Trans. Signal Process. 56(7), 3061–3068 (2008)
Saitoh, S.: Integral Transforms, Reproducing Kernels and their applications. Longman Scientific & Technical, Harlow (1997)
Paulsen, V.I.: An introduction to the theory of reproducing kernel hilbert spaces, http://www.math.uh.edu/~vern/rkhs.pdf
Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)
Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels. IEEE Transactions on Information Theory 52(10), 4635–4643 (2006)
Mandic, D., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters. Wiley, Chichester (2009)
Cacciapuoti, A.S., Gelli, G., Paura, L., Verde, F.: Widely linear versus linear blind multiuser detection with subspace-based channel estimation: Finite sample-size effects. IEEE Trans. Signal Process. 57(4), 1426–1443 (2009)
Kreutz-Delgado, K.: The complex gradient operator and the ℂℝ-calculus, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6515&rep=rep1&type=pdf
Platt, J.: A resourse allocating network for function interpolation. Newral Computation 3(2), 213–225 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouboulis, P., Theodoridis, S. (2010). The Complex Gaussian Kernel LMS Algorithm. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-15822-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15821-6
Online ISBN: 978-3-642-15822-3
eBook Packages: Computer ScienceComputer Science (R0)