Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nash Equilibria in Fisher Market

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

Abstract

Much work has been done on the computation of market equilibria. However due to strategic play by buyers, it is not clear whether these are actually observed in the market. Motivated by the observation that a buyer may derive a better payoff by feigning a different utility function and thereby manipulating the Fisher market equilibrium, we formulate the Fisher market game in which buyers strategize by posing different utility functions. We show that existence of a conflict-free allocation is a necessary condition for the Nash equilibria (NE) and also sufficient for the symmetric NE in this game. There are many NE with very different payoffs, and the Fisher equilibrium payoff is captured at a symmetric NE. We provide a complete polyhedral characterization of all the NE for the two-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adsul, B., Babu, C.S., Garg, J., Mehta, R., Sohoni, M.: Nash equilibria in Fisher market. arXiv:1002.4832 (2010)

    Google Scholar 

  2. Amir, R., Sahi, S., Shubik, M., Yao, S.: A strategic market game with complete markets. Journal of Economic Theory 51, 126–143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brainard, W.C., Scarf, H.E.: How to compute equilibrium prices in 1891. Cowles Foundation, Discussion Paper-1272 (2000)

    Google Scholar 

  4. Bu, T., Deng, X., Qi, Q.: Forward looking Nash equilibrium for keyword auction. Inf. Process. Lett. 105(2), 41–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New results on rationality and strongly polynomial solvability in Eisenberg-Gale markets. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Codenotti, B., Pemmaraju, S., Varadarajan, K.: On the polynomial time computation of equilibria for certain exchange economies. In: SODA 2005 (2005)

    Google Scholar 

  7. Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilibrium via a primal-dual type algorithm. JACM 55(5) (2008)

    Google Scholar 

  8. Dubey, P., Geanakoplos, J.: From Nash to Walras via Shapley-Shubik. Journal of Mathematical Economics 39, 391–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. The American Economic Review 97(1), 242–259 (2007)

    Article  Google Scholar 

  10. Garg, J.: Nash equilibria in Fisher market. Working Manuscript (2010)

    Google Scholar 

  11. Jain, K.: A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear utilities. In: FOCS 2004 (2004)

    Google Scholar 

  12. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  13. Nash, J.F.: Equilibrium points in n-person games. Proc. of the National Academy of Sciences of the United States of America 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  15. Orlin, J.B.: Improved algorithms for computing Fisher’s market clearing prices. In: STOC 2010 (2010)

    Google Scholar 

  16. Samuelson, P.A.: A note on the pure theory of consumers’ behaviour. Economica 5, 61–71 (1938)

    Article  Google Scholar 

  17. Samuelson, P.A.: Foundations of Economic Analysis. Harward University Press (1947)

    Google Scholar 

  18. Shapley, L., Shubik, M.: Trade using one commodity as a means of payment. Journal of Political Economy 85(5), 937–968 (1977)

    Article  Google Scholar 

  19. Varian, H.: Position auctions. International Journal of Industrial Organization 25, 1163–1178 (2007)

    Article  Google Scholar 

  20. Varian, H.: Microeconomic Analysis, 3rd edn (1992)

    Google Scholar 

  21. Walras, L.: Elements of Pure Economics, Translated by Jaffé, Allen & Urwin. London (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adsul, B., Babu, C.S., Garg, J., Mehta, R., Sohoni, M. (2010). Nash Equilibria in Fisher Market. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics