Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

b-Matchings and T-Joins

  • Chapter
  • First Online:
Combinatorial Optimization

Part of the book series: Algorithms and Combinatorics ((AC,volume 21))

  • 7762 Accesses

Abstract

In this chapter we introduce two more combinatorial optimization problems, the MAXIMUM WEIGHT b-MATCHING PROBLEM in Section 12.1 and the MINIMUM WEIGHT T -JOIN PROBLEM in Section 12.2. Both can be regarded as generalizations of the MINIMUM WEIGHT PERFECT MATCHING PROBLEM and also include other important problems. On the other hand, both problems can be reduced to theMINIMUM WEIGHT PERFECT MATCHING PROBLEM. They have combinatorial polynomial-time algorithms as well as polyhedral descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [1998]: Combinatorial Optimization. Wiley, New York 1998, Sections 5.4 and 5.5

    Google Scholar 

  • Frank, A. [1996]: A survey on T-joins, T-cuts, and conservative weightings. In: Combinatorics, Paul ErdÅ‘s is Eighty; Volume 2 (D. Miklós, V.T. Sós, T. SzÅ‘nyi, eds.), Bolyai Society, Budapest 1996, pp. 213–252

    Google Scholar 

  • Gerards, A.M.H. [1995]: Matching. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995, pp. 135–224

    Google Scholar 

  • Lovász, L., and Plummer, M.D. [1986]: Matching Theory. Akadémiai Kiadó, Budapest 1986, and North-Holland, Amsterdam 1986

    Google Scholar 

  • Schrijver, A. [1983]: Min-max results in combinatorial optimization; Section 6. In: Mathematical Programming; The State of the Art – Bonn 1982 (A. Bachem, M. Grötschel, B. Korte, eds.), Springer, Berlin 1983, pp. 439–500

    Google Scholar 

  • Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 29–33

    Google Scholar 

  • Anstee, R.P. [1987]: A polynomial algorithm for b-matchings: an alternative approach. Information Processing Letters 24 (1987), 153–157

    Article  MATH  MathSciNet  Google Scholar 

  • Babenko, M.A. and Karzanov, A.V. [2009]: Minimum mean cycle problem in bidirected and skew-symmetric graphs. Discrete Optimization 6 (2009), 92–97

    Article  MATH  MathSciNet  Google Scholar 

  • Barahona, F. [1993]: Reducing matching to polynomial size linear programming. SIAM Journal on Optimization 3 (1993), 688–695

    Article  MATH  MathSciNet  Google Scholar 

  • Caprara, A., and Fischetti, M. [1996]: {0, \frac{1} {2}}-Chvátal-Gomory cuts. Mathematical Programming 74 (1996), 221–235

    MATH  MathSciNet  Google Scholar 

  • Edmonds, J. [1965]: Maximum matching and a polyhedron with (0,1) vertices. Journal of Research of the National Bureau of Standards B 69 (1965), 125–130

    MATH  MathSciNet  Google Scholar 

  • Edmonds, J., and Johnson, E.L. [1970]: Matching: A well-solved class of integer linear programs. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York 1970, pp. 69–87

    Google Scholar 

  • Edmonds, J., and Johnson, E.L. [1973]: Matching, Euler tours and the Chinese postman problem. Mathematical Programming 5 (1973), 88–124

    MATH  MathSciNet  Google Scholar 

  • Gabow, H.N. [1983]: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. Proceedings of the 15th Annual ACM Symposium on Theory of Computing (1983), 448–456

    Google Scholar 

  • Goldberg, A.V., and Karzanov, A.V. [2004]: Maximum skew-symmetric flows and matchings. Mathematical Programming A 100 (2004), 537–568

    Article  MATH  MathSciNet  Google Scholar 

  • Guan, M. [1962]: Graphic programming using odd and even points. Chinese Mathematics 1 (1962), 273–277

    Google Scholar 

  • Hadlock, F. [1975]: Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing 4 (1975), 221–225

    Article  MATH  MathSciNet  Google Scholar 

  • Karzanov, A.V. [1985]: Minimum mean weight cuts and cycles in directed graphs. In: Kachestvennye i Priblizhennye Metody Issledovaniya Operatornykh UravneniÄ­ (V.S. Klimov, ed.), Yaroslavl State University Press, Yaroslavl 1985, pp. 72–83 [in Russian]. English translation: American Mathematical Society Translations Ser. 2, Vol. 158 (1994), 47–55

    Google Scholar 

  • Karzanov, A.V. [1986]: An algorithm for determining a maximum packing of odd-terminus cuts and its applications. In: Isslidovaniya po PrikladnoÄ­ Teorii Grafov (A.S. Alekseev, ed.), Nauka Siberian Dept., Novosibirsk, 1986, pp. 126–140 [in Russian]. English translation: American Mathematical Society Translations Ser. 2, Vol. 158 (1994), 57–70

    Google Scholar 

  • Letchford, A.N., Reinelt, G., and Theis, D.O. [2008]: Odd minimum cut sets and b-matchings revisited. SIAM Journal on Discrete Mathematics 22 (2008), 1480–1487

    Article  MATH  MathSciNet  Google Scholar 

  • Marsh, A.B. [1979]: Matching algorithms. Ph.D. thesis, Johns Hopkins University, Baltimore 1979

    Google Scholar 

  • Padberg, M.W., and Rao, M.R. [1982]: Odd minimum cut-sets and b-matchings. Mathematics of Operations Research 7 (1982), 67–80

    Article  MATH  MathSciNet  Google Scholar 

  • Pulleyblank, W.R. [1973]: Faces of matching polyhedra. Ph.D. thesis, University of Waterloo, 1973

    Google Scholar 

  • Pulleyblank, W.R. [1980]: Dual integrality in b-matching problems. Mathematical Programming Study 12 (1980), 176–196

    MATH  MathSciNet  Google Scholar 

  • Rizzi, R. [2002]: Minimum T-cuts and optimal T-pairings. Discrete Mathematics 257 (2002), 177–181

    Article  MATH  MathSciNet  Google Scholar 

  • SebÅ‘, A. [1987]: A quick proof of Seymour’s theorem on T-joins. Discrete Mathematics 64 (1987), 101–103

    Article  MathSciNet  Google Scholar 

  • Seymour, P.D. [1981]: On odd cuts and multicommodity flows. Proceedings of the London Mathematical Society (3) 42 (1981), 178–192

    Google Scholar 

  • Tutte, W.T. [1952]: The factors of graphs. Canadian Journal of Mathematics 4 (1952), 314–328

    Article  MATH  MathSciNet  Google Scholar 

  • Tutte, W.T. [1954]: A short proof of the factor theorem for finite graphs. Canadian Journal of Mathematics 6 (1954), 347–352

    Article  MATH  MathSciNet  Google Scholar 

  • Yannakakis, M. [1991]: Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences 43 (1991), 441–466

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Korte .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korte, B., Vygen, J. (2012). b-Matchings and T-Joins. In: Combinatorial Optimization. Algorithms and Combinatorics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24488-9_12

Download citation

Publish with us

Policies and ethics