Abstract
An effective framework for passive-blind color image tampering detection is presented in this paper. The proposed image statistical features are generated by applying Markovian rake transform to image luminance component. Markovian rake transform is the application of Markov process to difference arrays which are derived from the quantized block discrete cosine transform 2-D arrays with multiple block sizes. The efficacy of thus generated features has been confirmed over a recently established large-scale image dataset designed for tampering detection, with which some relevant issues have been addressed and corresponding adjustment measures have been taken. The initial tests by using thus generated classifiers on some real-life forged images available in the Internet show signs of promise of the proposed features as well as the challenge encountered by the research community of image tampering detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, Z., Qiu, G., Sun, Q., Lin, X., Ni, Z., Shi, Y.Q.: A Unified Authentication Framework for JPEG2000. In: IEEE International Conference on Multimedia and Expo., vol. 2, pp. 915–918. IEEE Press, New York (2004)
Ng, T.T., Chang, S.F., Lin, C.Y., Sun, Q.: Passive-blind Image Forensics. In: Zeng, W., Yu, H., Lin, C.Y. (eds.) Multimedia Security Technologies for Digital Rights, ch.15, pp. 383–412. Academic Press, Missouri (2006)
Ng, T.T., Chang, S.F., Sun, Q.: Blind Detection of Photomontage Using Higher Order Statistics. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688–691. IEEE Press, New York (2004)
Johnson, M.K., Farid, H.: Exposing Digital Forgeries by Detecting Inconsistencies in Lighting. In: 7th Workshop on Multimedia and Security, pp. 1–10. ACM, New York (2005)
Johnson, M.K., Farid, H.: Exposing Digital Forgeries in Complex Lighting Environments. IEEE Transaction on Information Forensics and Security 2(3), 450–461 (2007)
Hsu, Y.F., Chang, S.F.: Detecting Image Splicing Using Geometry Invariants and Camera Characteristics Consistency. In: IEEE International Conference on Multimedia and Expo., pp. 549–552. IEEE Press, New York (2006)
Fu, D., Shi, Y.Q., Su, W.: Detection of Image Splicing Based on Hilbert-Huang Transform and Moments of Characteristic Functions with Wavelet Decomposition. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 177–187. Springer, Heidelberg (2006)
Chen, W., Shi, Y.Q., Su, W.: Image Splicing Detection Using 2-D Phase Congruency and Statistical Moments of Characteristic Function. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6505, art. no. 65050R. SPIE, Washington (2007)
Shi, Y.Q., Chen, C., Chen, W.: A Natural Image Model Approach to Splicing Detection. In: 9th Workshop on Multimedia and Security, pp. 51–62. ACM, New York (2007)
Sutthiwan, P., Shi, Y.Q., Dong, J., Tan, T., Ng, T.T.: New Developments in Color Image Tampering Detection. In: IEEE International Symposium on Circuits and Systems, pp. 3064–3067. IEEE Press, New York (2010)
Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and Edge Statistics Based Approach for Image Splicing Detection. In: Kim, H.J., Katzenbeisser, S., Ho, A.T.S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 76–87. Springer, Heidelberg (2009)
Farid, H.: Exposing Digital Forgeries from JPEG Ghost. IEEE Transactions on Information Forensics and Security 4(1), 154–160 (2009)
Qu, Z., Qiu, G., Huang, J.: Detect Digital Image Splicing with Visual Cues. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 247–261. Springer, Heidelberg (2009)
Dirik, A., Memon, N.: Image Tamper Detection Based on Demosaicing Artifacts. In: 16th IEEE International Conference on Image Processing, pp. 1497–1500. IEEE Press, New York (2009)
Wang, W., Dong, J., Tan, T.: Effective Image Splicing Detection Based on Image Chroma. In: 16th IEEE International Conference on Image Processing, pp. 1257–1260. IEEE Press, New York (2009)
Wang, W., Dong, J., Tan, T.: Image Tampering Detection Based on Stationary Distribution of Markov Chain. In: 17th IEEE International Conference on Image Processing, pp. 2101–2104. IEEE Press, New York (2010)
Sutthiwan, P., Shi, Y.Q., Su, W., Ng, T.T.: Rake Transform and Edge Statistics for Image Forgery Detection. In: Workshop on Content Protection and Forensics, IEEE International Conference on Multimedia and Expo., pp. 1463–1468. IEEE Press, New York (2010)
Columbia DVMM Research Lab: Columbia Image Splicing Detection Evaluation Dataset (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSpliced-dataSet/AuthSplicedDataSet.htm
CASIA Tampered Image Detection Evaluation Database (2010), http://forensics.idealtest.org
Shi, Y.Q., Chen, C., Chen, W.: A Markov Process Based Approach to Effective Attacking JPEG Steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 249–264. Springer, Heidelberg (2007)
Leon-Garcia, A.: Probability and Random Processes for Electrical Engineering, 2nd edn. Addison-Wesley Publishing Company, Reading (1993)
Impulse Adventure, http://www.impulseadventure.com/photo/jpeg-quality.html
Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5307, pp. 472–480. SPIE, Washington (2004)
LIBSVM: A library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sutthiwan, P., Shi, Y.Q., Zhao, H., Ng, TT., Su, W. (2011). Markovian Rake Transform for Digital Image Tampering Detection. In: Shi, Y.Q., et al. Transactions on Data Hiding and Multimedia Security VI. Lecture Notes in Computer Science, vol 6730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24556-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-24556-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24555-8
Online ISBN: 978-3-642-24556-5
eBook Packages: Computer ScienceComputer Science (R0)