Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Treating Nonlinearities in Data-Space Variational Assimilation

  • Chapter
  • First Online:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Abstract

One goal of four-dimensional variational (4D-Var) state estimation is to utilize the longest time window that maximizes the observational constraints to improve predictive skill; unfortunately, nonlinearities are present in geophysical flows and limit the time in which the linear approximation is valid. For weakly nonlinear flows, updating the background trajectory, relinearizing, and repeating the minimization is a way to lengthen the time window. This so called “outer-loop” requires special consideration when minimizing the solution in data-space. This discussion provides a review of the relevant theory and presents two data-space cost functions: the standard cost-function that becomes unconstrained during additional outer-loops and a modified function that preserves the original constraint. Experiments with the Lorenz (J Atmos Sci 20:130–141, 1963) model show that unconstrained outer-loops perform similarly to sequentially applied 3D-Var assimilations by overfitting the observations and producing state estimates with poor predictive skill. Evaluating the posterior error covariances, the analysis error, and minimum cost function illustrate how overfitting degrades the solution. This is an important lesson for assimilation schemes: minimizing the model data residuals without proper constraint does not provide the optimal solution. By properly constraining the data-space outer-loop, adjoint-based methods will be well constrained over time windows that are longer than those required by linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett AF (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Bennett AF, Chua BS, Pflaum BL, Erwig M, Fu Z, Loft RD, Muccino JC (2008) The inverse ocean modeling system. Part I: implementation. J Atmos Ocean Technol 25:1608–1622

    Article  Google Scholar 

  • Broquet G, Edwards CA, Moore A, Powell BS, Veneziani M, Doyle JD (2009) Application of 4D-Variational data assimilation to the California Current System. Dyn Atmos Oceans 48:69–92

    Article  Google Scholar 

  • Cardinali C, Pezzulli S, Andersson E (2004) Influence-matrix diagnostic of a data assimilation system. Q J R Meteorol Soc 130:2767–2786

    Article  Google Scholar 

  • Chapnik B, Desroziers G, Talagrand O (2006) Diagnosis and tuning of observational error statistics in a quasi-operational data assimilation setting. Q J R Meteorol Soc 132:543–565

    Article  Google Scholar 

  • Chua BS, Bennett AF (2001) An inverse ocean modeling system. Ocean Model 3:137–165

    Article  Google Scholar 

  • Chua BS, Xu L, Rosmond T, Zaron ED (2009) Preconditioning representer-based variational data assimilation systems: application to NAVDAS-AR. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications. Springer, Berlin/Heidelberg, pp 307–319. doi:10.1007/978-3-540-71056-1

    Chapter  Google Scholar 

  • Courtier P (1997) Dual formulation of four-dimensional variational assimilation. Q J R Meteorol Soc 123:2449–2461

    Article  Google Scholar 

  • Courtier P, Andersson E, Heckley WA, Kelly G, Pailleux J, Rabier F, Thépaut JN, Undén P, Vasiljević D, Cardinali C, Eyre J, Hamrud M, Haseler J, Hollingsworth A, McNally AP, Stoffelen A (1993) Variational assimilation at ECMWF. Technical report 194, European Centre for Medium-Range Weather Forecasts

    Google Scholar 

  • Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Desroziers GL, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background and analysis-error statistics in observation space. Q J R Meteorol Soc 131:3385–3396

    Article  Google Scholar 

  • Desroziers G, Berre L, Chabot V, Chapnik B (2009) A posteriori diagnostics in an ensemble of perturbed analyses. Mon Weather Rev 137:3420–3436

    Article  Google Scholar 

  • Di Lorenzo E, Moore AM, Arango HG, Cornuelle BD, Miller AJ, Powell BS, Chua BS, Bennett AF (2007) Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): development and application for a baroclinic coastal upwelling system. Ocean Model 16:160–187

    Article  Google Scholar 

  • El Akkraoui A, Gauthier P (2010) Convergence properties of the primal and dual forms of variational data assimilation. Q J R Meteorol Soc 136:107–115

    Article  Google Scholar 

  • El Akkraoui A, Gauthier P, Pellerin S, Buis S (2008) Intercomparison of the primal and dual formulations of variational data assimilation. Q J R Meteorol Soc 134:1015–1025

    Article  Google Scholar 

  • Evensen G, Fario N (1997) Solving for the generalized inverse of the Lorenz model. J Meteorol Soc Jpn 75:229–243

    Google Scholar 

  • Gauthier P (1992) Chaos and quadric-dimensional data assimilation: a study based on the Lorenz model. Tellus 44A:2–17

    Google Scholar 

  • Golub GH, Van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Kurapov AL, Egbert GD, Allen JS, Miller RN (2007) Representer-based variational data assimilation in a nonlinear model of nearshore circulation. J Geophys Res 112:C11019

    Article  Google Scholar 

  • Le Dimet F, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A:97–110

    Article  Google Scholar 

  • Lorenc A (2006) Why does 4D-Var beat 3D-Var? Q J R Meteorol Soc 131:3247–3257

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Miller R, Ghil M, Gauthiez F (1994) Advanced data assimilation in strongly nonlinear dynamical systems. J Atmos Sci 51:1037–1056

    Article  Google Scholar 

  • Moore AM, Arango HG, Broquet G, Edwards C, Veneziani M, Powell BS, Foley D, Doyle J, Costa D, Robinson P (2011a) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: part II – performance and application to the California Current System. Prog Oceanogr 91:50–73. doi:10.1016/j.pocean.2011.05.003

    Article  Google Scholar 

  • Moore AM, Arango HG, Broquet G, Powell BS, Zavala-Garay J, Weaver AT (2011b) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: part I – system overview and formulation. Prog Oceanogr 91:34–49. doi:10.1016/j.pocean.2011.05.004

    Article  Google Scholar 

  • Muccino JC, Luo H, Arango HG, Haidvogel D, Levin JC, Bennett AF, Chua BS, Egbert GD, Cornuelle BD, Miller AJ, Di Lorenzo E, Moore AM, Zaron ED (2008) The inverse ocean modeling system. Part II: applications. J Atmos Ocean Technol 25:1623–1637

    Article  Google Scholar 

  • Ngodock HE, Smith SR, Jacobs GA (2007) Cycling the representer algorithm for variational data assimilation with the Lorenz attractor. Mon Weather Rev 135:373–386

    Article  Google Scholar 

  • Powell BS, Arango HG, Moore AM, Di Lorenzo E, Milliff RF, Foley D (2008) 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Model 25:173–188

    Article  Google Scholar 

  • Talagrand O (1999) A posteriori verification of analysis and assimilation algorithms. In: Proceedings of ECMWF Workshop on Diagnostics of Data Assimilation Systems, pp 17–28. Shineld Park, Reading, UK

    Google Scholar 

  • Talagrand O, Courtier P (1987) Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q J R Meteorol Soc 113:1311–1328

    Article  Google Scholar 

  • Tshimanga J, Gratton S, Weaver AT, Sartenaer A (2008) Limited-memory preconditioners with application to incremental four-dimensional variational data assimilation. Q J R Meteorol Soc 134:751–769

    Article  Google Scholar 

  • Weaver AT, Vialard J, Anderson DLT (2003) Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: formulation, internal diagnostics, and consistency checks. Mon Weather Rev 131:1360–1378

    Article  Google Scholar 

  • Zaron ED, Pradal MA, Miller PD, Blumberg AF, Georgas N, Li W, Cornuelle JM (2011) Bottom topography mapping via nonlinear data assimilation. J Atmos Ocean Technol 28:1606–1623

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Bruce Cornuelle for his thoughts and discussions. Dr. Powell was supported by the Office of Naval Research contract #N00014-09-10939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Powell, B.S. (2013). Treating Nonlinearities in Data-Space Variational Assimilation. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_10

Download citation

Publish with us

Policies and ethics