Abstract
This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Joshi, S., David, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage LVI(23), 151–160 (2004)
Twining, C.J., Cootes, T., Marsland, S., Petrovic, V., Schestowitz, R., Taylor, C.J.: A unified information-theoretic approach to groupwise non-rigid registration and model building. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 1–14. Springer, Heidelberg (2005)
Learned-Miller, E.: Data driven image models through continuous joint alignment. IEEE TPAMI 28(2), 236–250 (2005)
Wu, G., Wang, Q., Jia, H., Shen, D.: Feature-based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping 33(2), 253–271 (2012)
Zhang, P., Cootes, T.F.: Automatic construction of parts+geometry models for initializing groupwise registration. IEEE TMI 31(2), 341–358 (2012)
Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal image set registration and atlas formation. MIA 10(3), 440 (2006)
Spiclin, Z., Likar, B., Pernus, F.: Groupwise registration of multimodal images by an efficient joint entropy minimization scheme. IEEE TIP 21(5), 2546–2558 (2012)
Guld, M.O., Kohnen, M., Keysers, D., Schubert, H., Wein, B., Bredno, J., Lehmann, T.M.: Quality of dicom header information for image categorization. In: Int. Symposium on Medical Imaging, vol. 4685, pp. 280–287. SPIE (2002)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE TPAMI 27(10), 1615–1630 (2005)
Toews, M., Arbel, T.: A statistical parts-based appearance model of anatomical variability. IEEE TMI 26(4), 497–508 (2007)
Toews, M., Wells III, W.: Efficient and robust model-to-image alignment using 3d scale-invariant features. Medical Image Analysis 17(3), 271–282 (2013)
Chen, J., Tian, J.: Real-time multi-modal rigid registration based on a novel symmetric-sift descriptor. Progress in Natural Science 19(5), 643–651 (2009)
West, J., Fitzpatrick, J., Wang, M., Dawant, B., Maurer Jr., C., Kessler, R., Maciunas, R., Barillot, C., Lemoine, D., Collignon, A., et al.: Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography 21(4), 554–568 (1997)
Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. IEEE Transactions on Communications 31(4) (1983)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1962)
Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multimodal image registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)
Andronache, A., von Siebenthal, M., Szekely, G., Cattin, P.: Non-rigid registration of multi-modal images using both mutual information and cross-correlation. MIA 12, 3–15 (2008)
Evans, Hastings, Peacock: Statistical Distributions, 2nd edn. John Wiley and Sons (1993)
Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley (2001)
Rasmussen, C.E.: The infinite gaussian mixture model. In: Neural Information Processing Systems, pp. 554–560 (2001)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE TPAMI 24(5), 603–619 (2002)
Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: CVPR, pp. 1000–1006 (1997)
Wachinger, C., Navab, N.: Structural image representation for image registration. In: MMBIA, pp. 23–30 (2010)
Rohr, K.: On 3D differential operators for detecting point landmarks. Image and Vision Computing 15(3), 219–233 (1997)
Zöllei, L., Jenkinson, M., Timoner, S., Wells, W.M.: A marginalized MAP approach and EM optimization for pair-wise registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 662–674. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Toews, M., Zöllei, L., Wells, W.M. (2013). Feature-Based Alignment of Volumetric Multi-modal Images. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)