Abstract
In the very wide setting of a Basic Fuzzy Algebra, a formal algebraic model for Commonsense Reasoning is presented with fuzzy and crisp sets including, in particular, the usual case of the Standard Algebras of Fuzzy Sets. The aim with which the model is constructed is that of, first, adding to Zadeh’s Computing with Words a wide perspective of ordinary reasoning in agreement with some basic characteristics of it, and second, presenting an operational ground on which linguistic terms can be represented, and schemes of inference posed. Additionally, the chapter also tries to express the author’s belief that reasoning deserves to be studied like an Experimental Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- BFA:
-
basic fuzzy algebra
- CR:
-
commonsense reasoning
- CWW:
-
computing with words
References
E. Trillas, A. Pradera, A. Alvarez: On the reducibility of hypotheses and consequences, Inf. Sci. 179(23), 3957–3963 (2009)
I. García-Honrado, E. Trillas: An essay on the linguistic roots of fuzzy sets, Inf. Sci. 181, 4061–4074 (2011)
E. Trillas, I. García-Honrado: Hacia un replanteamiento del cálculo proposicional clásico?, Agora 32(1), 7–25 (2013)
E. Trillas, C. Alsina, E. Renedo: On some classical schemes of reasoning in fuzzy logic, New Math. Nat. Comput. 7(3), 433–451 (2011)
A. Pradera, E. Trillas: A reflection on rationality, guessing, and measuring, IPMU, Annecy (2002) pp. 777–784
K. Menger: Morality, Decision and Social Organization (Reidel, Dordrecht 1974)
L.A. Zadeh: Computing with Words. Principal Concepts and Ideas (Springer, Berlin, Heidelberg 2012)
F.H. Rauscher, G.L. Shaw, K.N. Ky: Listening to Mozart enhances spatial-temporal reasoning, Neurosci. Lett. 185, 44–47 (1995)
J. Berger: The Success and Failure of Picasso (Pantheon, New York 1989)
E. Trillas, C. Moraga, S. Guadarrama, S. Cubillo, E. Castiñeira: Computing with antonyms, Stud. Fuzziness Soft Comput. 217, 133–153 (2007)
E. Castiñeira, S. Cubillo, E. Trillas: On a similarity ratio, Proc. EUSFLAT-ESTYLF (1999) pp. 239–242
E. Wigner: The unreasonable effectiveness of mathematics in the natural sciences, Commun. Pure Appl. Math. 13(1), 1–14 (1960)
K. Popper: Conjectures and Refutations (Harper Row, New York 1968)
E. Trillas: Reasoning: In black & white?, Proc. NAFIPS (2012)
E. Trillas, S. Guadarrama: Fuzzy representations need a careful design, Int. J. Gen. Syst. 39(3), 329–346 (2010)
E. Trillas, C. Moraga: Reasons for a careful design of fuzzy sets, Proc. EUSFLAT (2013), Forthcoming
K. Menger: A counterpart of Occam's Razor, Synthese 13(4), 331–349 (1961)
A.C. Masquelet: Le Raisonnement Médical (PUF/Clarendon, Oxford 2006), in French
E. Trillas, C. Alsina, E. Renedo: On some schemes of reasoning in fuzzy logic, New Math. Nat. Comput. 7(3), 433–451 (2011)
E. Trillas, L.A. Urtubey: Towards the dissolution of the Sorites paradox, Appl. Soft Comput. 11(2), 1506–1510 (2011)
A. Tarski: Logic, Semantics, Metamathematics (Hackett, Cambridge 1956)
J.F. Sowa: E-mail to P. Werbos, 2011, in BISC-GROUP
C.S. Peirce: Deduction, induction, and hypothesis, Popul. Sci. Mon. 13, 470–482 (1878)
J.F. Sowa: Knowledge Representation (Brooks/Cole, Farmington Hills 2000)
R. Reiter: Nonmonotonic reasoning, Annu. Rev. Comput. Sci. 2, 147–186 (1987)
W. Ockham: Summa Logica (Parker, London 2012), in Spanish and Latin
W. Whewell: Novum Organum Renovatum (Second Part of the Philosophy of Inductive Sciences) (Parker, London 1858)
E. Trillas: A model for Crisp Reasoning with fuzzy sets, Int. J. Intell. Syst. 27, 859–872 (2012)
P.R. Halmos: Naïve Set Theory (Van Nostrand, Amsterdam 1960)
A. Pradera, E. Trillas, E. Renedo: An overview on the construction of fuzzy set theories, New Math. Nat. Comput. 1(3), 329–358 (2005)
G. Birkhoff: Lattice Theory (American Mathematical Society, New York 1967)
I. García-Honrado, E. Trillas: On an attempt to formalize guessing. In: Soft Computing in Humanities and Social Sciences, ed. by R. Seising, V. Sanz (Springer, Berlin, Heidelberg 2012) pp. 237–255
E. Trillas, S. Cubillo, E. Castiñeira: On conjectures in orthocomplemented lattices, Artif. Intell. 117(2), 255–275 (2000)
E. Trillas, D. Sánchez: Conjectures in De Morgan algebras, Proc. NAFIPS (2012)
S. Baker: Induction and Hypotheses (Cornell Univ. Press, Ithaca 1957)
B. Bossanquet: Logic or the Morphology of Knowledge, Vol. I (Clarendon, Oxford 1911)
J.S. Mill: Sir William Hamilton's Philosophy and the Principal Philosophical Questions Discussed in His Writings (Longmans Green, London 1889)
I. García-Honrado, A.R. de Soto, E. Trillas: Some (Unended) queries on conjecturing, Proc. 1st World Conf. Soft Comput. (2011) pp. 152–157
L. Garmedia, R.R. Yager, E. Trillas, A. Salvador: Measures of fuzzy sets under T-indistinguishabilities, IEEE Trans. Fuzzy Syst. 14(4), 568–572 (2006)
A. De Luca, S. Termini: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inf. Control 20, 301–312 (1972)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Trillas, E. (2015). An Algebraic Model of Reasoning to Support Zadeh’s CWW. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)