Abstract
Fuzzy control is by far the most successful field of applied fuzzy logic. This chapter discusses human-inspired concepts of fuzzy control. After a short introduction to classical control engineering, three types of very well known fuzzy control concepts are presented: Mamdani-Assilian, Takagi-Sugeno and fuzzy logic-based controllers. Then three real-world fuzzy control applications are discussed. The chapter ends with a conclusion and a future perspective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- COA:
-
center of area
- COG:
-
center of gravity
- DLR:
-
German Aerospace Center
- FCM:
-
fuzzy c-means algorithm
- MOM:
-
mean of maxima
- PID:
-
proportional-integral-derivative
- RAM:
-
random access memory
- RBF:
-
radial basis function
- ROM:
-
read only memory
References
E.H. Mamdani: Application of fuzzy algorithms for the control of a simple dynamic plant, Proc. IEEE 121(12), 1585–1588 (1974)
S. Yasunobu, S. Miyamoto: Automatic Train Operation System by Predictive Fuzzy Control (North-Holland, Amsterdam 1985) pp. 1–18
Google patents: http://patents.google.com/, last accessed on August 22, 2013
K. Hirota (Ed.): Industrial Applications of Fuzzy Technology (Springer, Tokio 1993)
T. Terano, M. Sugeno: Applied Fuzzy Systems (Academic, Boston 1994)
R.-E. Precup, H. Hellendoorn: A survey on industrial applications of fuzzy control, Comput. Ind. 62(3), 213–226 (2011)
C. Moewes, R. Kruse: Fuzzy control for knowledge-based interpolation. In: Combining Experimentation and Theory: A Hommage to Abe Mamdani, Studies in Fuzziness and Soft Computing, Vol. 271, ed. by E. Trillas, P.P. Bonissone, L. Magdalena, J. Kacprzyk (Springer, Berlin, Heidelberg 2012) pp. 91–101
P. Podržaj, M. Jenko: A fuzzy logic-controlled thermal process for simultaneous pasteurization and cooking of soft-boiled eggs, Chemom. Intell. Lab. Syst. 102(1), 1–7 (2010)
L.A. Zadeh: Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)
L.A. Zadeh: Fuzzy sets, Inf. Control 8(3), 338–353 (1965)
K. Tanaka, H.O. Wang: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (Wiley, New York 2001)
K. Michels, F. Klawonn, R. Kruse, A. Nürnberger: Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers, Studies in Fuzziness and Soft Computing, Vol. 200 (Springer, Berlin, Heidelberg 2006)
K.J. Åström, B. Wittenmark: Adaptive Control (Courier Dover, Mineola 2008)
G.C. Goodwin, S.F. Graebe, M.E. Salgado: Control System Design, Vol. 240 (Prentice Hall, Upper Saddle River 2001)
E.H. Mamdani, S. Assilian: An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)
R. Kruse, J. Gebhardt, F. Klawonn: Foundations of Fuzzy Systems (Wiley, Chichester 1994)
O. Cordón, M.J. del Jesus, F. Herrera: A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. Approx. Reason. 20(1), 21–45 (1999)
F. Klawonn, J. Gebhardt, R. Kruse: Fuzzy control on the basis of equality relations with an example from idle speed control, IEEE Trans. Fuzzy Syst. 3(3), 336–350 (1995)
F. Klawonn, R. Kruse: Equality relations as a basis for fuzzy control, Fuzzy Sets Syst. 54(2), 147–156 (1993)
D. Boixader, J. Jacas: Extensionality based approximate reasoning, Int. J. Approx. Reason. 19(3/4), 221–230 (1998)
F. Klawonn, J.L. Castro: Similarity in fuzzy reasoning, Mathw. Soft Comput. 2(3), 197–228 (1995)
T. Takagi, M. Sugeno: Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
G. Feng: A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)
L. Wu, X. Su, P. Shi, J. Qiu: A new approach to stability analysis and stabilization of discrete-time ts fuzzy time-varying delay systems, IEEE Trans. Syst. Man Cybern. B: Cybern. 41(1), 273–286 (2011)
K. Tanaka, H. Yoshida, H. Ohtake, H.O. Wang: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems, IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)
L.A. Zadeh: A theory of approximate reasoning, Proc. 9th Mach. Intell. Workshop, ed. by J.E. Hayes, D. Michie, L.I. Mikulich (Wiley, New York 1979) pp. 149–194
L.A. Zadeh: The role of fuzzy logic in the management of uncertainty in expert systems, Fuzzy Sets Syst. 11(1/3), 197–198 (1983)
D. Dubois, H. Prade: Possibility Theory: An Approach to Computerized Processing of Uncertainty (Plenum Press, New York 1988)
L.A. Zadeh: Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1(1), 3–28 (1978)
D. Dubois, H. Prade: The generalized modus ponens under sup-min composition – A theoretical study. In: Approximate Reasoning in Expert Systems, ed. by M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (North-Holland, Amsterdam 1985) pp. 217–232
D. Dubois, H. Prade: Possibility theory as a basis for preference propagation in automated reasoning, 1992 IEEE Int. Conf. Fuzzy Syst. (IEEE, New York 1992) pp. 821–832
M. Schröder, R. Petersen, F. Klawonn, R. Kruse: Two paradigms of automotive fuzzy logic applications. In: Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, Environmental and Intelligent Manufacturing Systems Series, Vol. 9, ed. by M. Jamshidi, A. Titli, L. Zadeh, S. Boverie (Prentice Hall, Upper Saddle River 1997) pp. 153–174
L.I. Kuncheva: Fuzzy Classifier Design, Studies in Fuzziness and Soft Computing, Vol. 49 (Physica, Heidelberg, New York 2000)
D. Nauck, R. Kruse: A neuro-fuzzy method to learn fuzzy classification rules from data, Fuzzy Sets Syst. 89(3), 277–288 (1997)
R. Mikut, J. Jäkel, L. Gröll: Interpretability issues in data-based learning of fuzzy systems, Fuzzy Sets Syst. 150(2), 179–197 (2005)
R. Mikut, O. Burmeister, L. Gröll, M. Reischl: Takagi-Sugeno-Kang fuzzy classifiers for a special class of time-varying systems, IEEE Trans. Fuzzy Syst. 16(4), 1038–1049 (2008)
J.A. Dickerson, B. Kosko: Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Syst. Man Cybern. B: Cybern. 26(4), 542–560 (1996)
D. Nauck, R. Kruse: Neuro-fuzzy systems for function approximation, Fuzzy Sets Syst. 101(2), 261–271 (1999)
L. Wang, J.M. Mendel: Generating fuzzy rules by learning from examples, IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)
J.C. Bezdek, J. Keller, R. Krisnapuram, N.R. Pal: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets, Vol. 4 (Kluwer, Norwell 1999)
F. Höppner, F. Klawonn, R. Kruse, T. Runkler: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition (Wiley, New York 1999)
F. Klawonn, R. Kruse: Automatic generation of fuzzy controllers by fuzzy clustering, 1995 IEEE Int. Conf. Syst. Man Cybern.: Intell. Syst. 21st Century, Vol. 3 (IEEE, Vancouver 1995) pp. 2040–2045
F. Klawonn, R. Kruse: Constructing a fuzzy controller from data, Fuzzy Sets Syst. 85(2), 177–193 (1997)
Z.-W. Woo, H.-Y. Chung, J.-J. Lin: A PID type fuzzy controller with self-tuning scaling factors, Fuzzy Sets Syst. 115(2), 321–326 (2000)
R. Kruse, P. Held, C. Moewes: On fuzzy data analysis, Stud. Fuzzin. Soft Comput. 298, 351–356 (2013)
O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena: Ten years of genetic fuzzy systems: Current framework and new trends, Fuzzy Sets Syst. 141(1), 5–31 (2004)
C. Moewes, R. Kruse: Evolutionary fuzzy rules for ordinal binary classification with monotonicity constraints. In: Soft Computing: State of the Art Theory and Novel Applications, Studies in Fuzziness and Soft Computing, Vol. 291, ed. by R.R. Yager, A.M. Abbasov, M.Z. Reformat, S.N. Shahbazova (Springer, Berlin, Heidelberg 2013) pp. 105–112
D. Nauck, F. Klawonn, R. Kruse: Foundations of Neuro-Fuzzy Systems (Wiley, New York 1997)
J.C. Hühn, E. Hüllermeier: FR3: A fuzzy rule learner for inducing reliable classifiers, IEEE Trans. Fuzzy Syst. 17(1), 138–149 (2009)
C. Olaru, L. Wehenkel: A complete fuzzy decision tree technique, Fuzzy Sets Syst. 138(2), 221–254 (2003)
C. Moewes, R. Kruse: Unification of fuzzy SVMs and rule extraction methods through imprecise domain knowledge, Proc. Int. Conf. Inf. Process. Manag. Uncertain. Knowl.-Based Syst. (IPMU-08), ed. by J.L. Verdegay, L. Magdalena, M. Ojeda-Aciego (Torremolinos, Málaga 2008) pp. 1527–1534
C. Moewes, R. Kruse: On the usefulness of fuzzy SVMs and the extraction of fuzzy rules from SVMs, Proc. 7th Conf. Eur. Soc. Fuzzy Logic Technol. (EUSFLAT-2011) and LFA-2011, Vol. 17, ed. by S. Galichet, J. Montero, G. Mauris (Atlantis, Amsterdam, Paris 2011) pp. 943–948
J.C. Bezdek: Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis (Cornell University, Itheca 1973)
J.C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms (Kluwer, Norwell 1981)
M. Sugeno, T. Yasukawa: A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)
A. Keller, R. Kruse: Fuzzy rule generation for transfer passenger analysis, Proc. 1st Int. Conf. Fuzzy Syst. Knowl. Discovery (FSDK'02), ed. by L. Wang, S.K. Halgamuge, X. Yao (Orchid Country Club, Singapore 2002) pp. 667–671
R. Kruse, C. Döring, M. Lesot: Fundamentals of fuzzy clustering. In: Advances in Fuzzy Clustering and Its Applications, ed. by J.V. de Oliveira, W. Pedrycz (Wiley, Chichester 2007) pp. 3–30
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Moewes, C., Mikut, R., Kruse, R. (2015). Fuzzy Control. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)