Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we consider particular classes of infinite-valued propositional logics which are strongly related to t-norms as conjunction connectives and to the real unit interval as a set of their truth degrees, and which have their implication connectives determined via an adjointness condition.

Such systems have in the last 10 years been of considerable interest, and the topic of important results. They generalize well-known systems of infinite-valued logic, and form a link to as different areas as, e. g., linear logic and fuzzy set theory.

We survey the most important ones of these systems, always explaining suitable algebraic semantics and adequate formal calculi, but also mentioning complexity issues.

Finally, we mention a type of extension which allows for graded notions of provability and entailment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Łukasiewicz, A. Tarski: Untersuchungen über den Aussagenkalkül, c.r. Séances Soc. Sci. Lett. Vars. cl. III 23, 30–50 (1930)

    Google Scholar 

  2. K. Gödel: Zum intuitionistischen Aussagenkalkül, Anz. Akad. Wiss. Wien: Math.-naturwiss. Kl. 69, 65–66 (1932)

    MATH  Google Scholar 

  3. P. Hájek, L. Godo, F. Esteva: A complete many-valued logic with product-conjunction, Arch. Math. Log. 35, 191–208 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.L. Post: Introduction to a general theory of elementary propositions, Am. J. Math. 43, 163–185 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Gottwald: A Treatise on Many-Valued Logics, Studies in Logic and Computation, Vol. 9 (Research Studies, Baldock 2001)

    MATH  Google Scholar 

  6. M. Dummett: A propositional calculus with denumerable matrix, J. Symb. Log. 24, 97–106 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. C.C. Chang: Algebraic analysis of many valued logics, Trans. Am. Math. Soc. 88, 476–490 (1958)

    Article  MathSciNet  Google Scholar 

  8. R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic – Studia Logica Library, Vol. 7 (Kluwer, Dordrecht 2000)

    MATH  Google Scholar 

  9. P.C. Rosenbloom: Post algebras. I. postulates and general theory, Am. J. Math. 64, 167–188 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Epstein: The lattice theory of post algebras, Trans. Am. Math. Soc. 95, 300–317 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Cat-Ho: Generalized Post Algebras and Their Applications to Some Infinitary Many-Valued Logics, Diss. Math., Vol. 57 (PWN, Warsaw 1973)

    MATH  Google Scholar 

  12. P. Dwinger: Generalized post algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16, 559–563 (1968)

    MathSciNet  MATH  Google Scholar 

  13. P. Dwinger: A survey of the theory of post algebras and their generalizations. In: Modern Uses of Multiple-Valued Logic, ed. by J.M. Dunn, G. Epstein (Reidel, Dordrecht 1977) pp. 53–75

    Google Scholar 

  14. H. Rasiowa: On generalised post algebras of order $\omega^{+}$ and $\omega^{+}$-valued predicate calculi, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 21, 209–219 (1973)

    MathSciNet  MATH  Google Scholar 

  15. G. Epstein, H. Rasiowa: Theory and uses of post algebras of order $\omega+\omega^{*}$. Part I, 20th Int. Symp. Multiple-Valued Log., Charlotte/NC 1990 (IEEE Computer Society, New York 1990) pp. 42–47

    Google Scholar 

  16. G. Epstein, H. Rasiowa: Theory and uses of post algebras of order $\omega+\omega^{*}$. Part II, 21st Int. Symp. Multiple-Valued Log., Victoria/B.C., 1991 (IEEE Computer Society, New York 1991) pp. 248–254

    Google Scholar 

  17. D.C. Rine (Ed.): Computer Science and Multiple Valued Logic, 2nd edn. (North-Holland, Amsterdam 1984)

    MATH  Google Scholar 

  18. L.A. Zadeh: Fuzzy sets, Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Schweizer, A. Sklar: Probabilistic Metric Spaces (North-Holland, Amsterdam 1983)

    MATH  Google Scholar 

  20. E.P. Klement, R. Mesiar, E. Pap: Triangular Norms (Kluwer, Dordrecht 2000)

    Book  MATH  Google Scholar 

  21. C. Alsina, M.J. Frank, B. Schweizer: Associative functions. Triangular Norms and Copulas (World Scientific, Hackensack 2006)

    Book  MATH  Google Scholar 

  22. S. Gottwald: Fuzzy Sets and Fuzzy Logic: Foundations of Application – From a Mathematical Point of View. Artificial Intelligence (Verlag Vieweg, Wiesbaden, and Tecnea, Toulouse 1993)

    Book  MATH  Google Scholar 

  23. P. Hájek: Metamathematics of Fuzzy Logic, Trends in Logic, Vol. 4 (Kluwer, Dordrecht 1998)

    MATH  Google Scholar 

  24. P. Hájek: Basic fuzzy logic and BL-algebras, Soft Comput. 2, 124–128 (1998)

    Article  Google Scholar 

  25. D. Butnariu, E.P. Klement, S. Zafrany: On triangular norm-based propositional fuzzy logics, Fuzzy Sets Syst. 69, 241–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Hekrdla, E.P. Klement, M. Navara: Two approaches to fuzzy propositional logics, J. Multiple-Valued Log, Soft Comput. 9, 343–360 (2003)

    MathSciNet  MATH  Google Scholar 

  27. F. Esteva, L. Godo: Monoidal t-norm based logic: Toward a logic for left-continuous t-norms, Fuzzy Sets Syst. 124, 271–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. U. Höhle: On the fundamentals of fuzzy set theory, J. Math. Anal. Appl. 201, 786–826 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Rasiowa: An Algebraic Approach to Non-Classical Logics (North-Holland/PWN, Amsterdam/Warsaw 1974)

    MATH  Google Scholar 

  30. R. Cignoli, F. Esteva, L. Godo, A. Torrens: Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Comput. 4, 106–112 (2000)

    Article  Google Scholar 

  31. S. Burris, H.P. Sankappanavar: A Course in Universal Algebra (Springer, New York 1981)

    Book  MATH  Google Scholar 

  32. K. Denecke, S.L. Wismath: Universal Algebra and Applications in Theoretical Computer Science (Chapman Hall/CRC, Boca Raton 2002)

    MATH  Google Scholar 

  33. Z. Haniková: Standard algebras for fuzzy propositional calculi, Fuzzy Sets Syst. 124, 309–320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Z. Haniková: A note on the complexity of propositional logics of individual t-algebras, Neural Netw. World 12, 453–460 (2002)

    Google Scholar 

  35. S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo's logic MTL, Stud. Log. 70, 183–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera: Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies, Ann. Pure Appl. Log. 160, 53–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. U. Höhle: Presheaves over GL-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory and Decision Library, Series B, Vol. 32, ed. by U. Höhle, E.P. Klement (Kluwer, Dordrecht 1995) pp. 127–157

    Chapter  Google Scholar 

  38. U. Höhle: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory and Decision Library, Series B, Vol. 32, ed. by U. Höhle, E.P. Klement (Kluwer, Dordrecht 1995) pp. 53–106

    Chapter  Google Scholar 

  39. F. Esteva, L. Godo, F. Montagna: Equational characterization of the subvarieties of BL generated by t-norm algebras, Stud. Log. 76, 161–200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Cintula, P. Hájek: Triangular norm based predicate fuzzy logics, Fuzzy Sets Syst. 161, 311–346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Cintula, P. Hájek: On theories and models in fuzzy predicate logics, J. Symb. Log. 71, 863–880 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Thiele: Theorie der endlichwertigen Łukasiewiczschen Prádikatenkalküle der ersten Stufe, Z. Math. Log. Grundl. Math. 4, 108–142 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Gottwald: A generalized Łukasiewicz-style identity logic. In: Mathematical Logic and Formal Systems, Lecture Notes in Pure and Applied Mathematics, Vol. 94, ed. by L.P. de Alcantara (Marcel Dekker, New York 1985) pp. 183–195

    Google Scholar 

  44. V. Novák, I. Perfilieva, J. Močkoř: Mathematical Principles of Fuzzy Logic (Kluwer, Boston 1999)

    Book  MATH  Google Scholar 

  45. R. Bělohlávek, V. Vychodil: Fuzzy Horn logic. I. Proof theory, Arch. Math. Log. 45, 3–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Bělohlávek, V. Vychodil: Fuzzy Horn logic. II. Implicationally defined classes, Arch. Math. Log. 45, 149–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Baaz: Infinite-valued Gödel logics with 0-1 projections and relativizations. In: Gödel '96, Lecture Notes in Logic, Vol. 6, ed. by P. Hájek (Springer, New York 1996) pp. 23–33

    Google Scholar 

  48. F. Esteva, L. Godo, P. Hájek, M. Navara: Residuated fuzzy logic with an involutive negation, Arch. Math. Log. 39, 103–124 (2000)

    Article  MATH  Google Scholar 

  49. S. Gottwald, S. Jenei: A new axiomatization for involutive monoidal t-norm based logic, Fuzzy Sets Syst. 124, 303–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Cintula: The ŁΠ and Ł$\Pi\frac{1}{2}$ propositional and predicate logics, Fuzzy Sets Syst. 124, 289–302 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Cintula: An alternative approach to the ŁΠ logic, Neural Netw. World 124, 561–575 (2001)

    MathSciNet  Google Scholar 

  52. P. Cintula: Advances in ŁΠ and Ł$\Pi\frac{1}{2}$ logics, Arch. Math. Log. 42, 449–468 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Esteva, L. Godo: Putting together Łukasiewicz and product logics, Mathw. Soft Comput. 6, 219–234 (1999)

    MathSciNet  MATH  Google Scholar 

  54. F. Esteva, L. Godo, F. Montagna: The ŁΠ and Ł$\Pi\frac{1}{2}$ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, Arch. Math. Log. 40, 39–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Agliano, I.M.A. Ferreirim, F. Montagna: Basic hoops: An algebraic study of continuous t-norms, Stud. Log. 87, 73–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Esteva, L. Godo, P. Hájek, F. Montagna: Hoops and fuzzy logic, J. Log. Comput. 13, 531–555 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. di Nola, G. Georgescu, A. Iorgulescu: Pseudo-BL algebras. I and II, J. Multiple-Valued Log. 8, 671–750 (2002)

    MathSciNet  MATH  Google Scholar 

  58. P. Flondor, G. Georgescu, A. Iorgulescu: Pseudo t-norms and pseudo-BL algebras, Soft Comput. 5, 355–371 (2001)

    Article  MATH  Google Scholar 

  59. P. Hájek: Embedding standard BL-algebras into non-commutative pseudo-BL-algebras, Tatra Mt. Math. Publ. 27, 125–130 (2003)

    MathSciNet  MATH  Google Scholar 

  60. P. Hájek: Fuzzy logics with non-commutative conjunctions, J. Log. Comput. 13, 469–479 (2003)

    Article  MATH  Google Scholar 

  61. P. Hájek: Observations on non-commutative fuzzy logics, Soft Comput. 8, 28–43 (2003)

    Article  Google Scholar 

  62. S. Jenei, F. Montagna: A proof of standard completeness for non-commutative monoidal t-norm logic, Neural Netw. World 13, 481–488 (2003)

    Google Scholar 

  63. J. Kühr: Pseudo-BL algebras and PRl-monoids, Math. Bohem. 128, 199–208 (2003)

    MathSciNet  MATH  Google Scholar 

  64. P. Hájek: Fleas and fuzzy logic, J. Multiple-Valued Log. Soft Comput. 11, 137–152 (2005)

    MathSciNet  MATH  Google Scholar 

  65. J. Pavelka: On fuzzy logic. Part I, Z. Math. Log. Grundl. Math. 25, 45–52 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Pavelka: On fuzzy logic. Part II, Z. Math. Log. Grundl. Math. 25, 119–134 (1979)

    Article  MATH  Google Scholar 

  67. J. Pavelka: On fuzzy logic. Part III, Z. Math. Log. Grundl. Math. 25, 447–464 (1979)

    Article  MATH  Google Scholar 

  68. P. Hájek, J. Paris, J. Shepherdson: Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic, J. Symb. Log. 65, 669–682 (2000)

    Article  MATH  Google Scholar 

  69. E. Turunen: Well-defined fuzzy sentential logic, Math. Log. Quart. 41, 236–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  70. G. Gerla: Fuzzy logic, Mathematical Tools for Approximate Reasoning, Trends in Logic, Vol. 11 (Kluwer, Dordrecht 2001)

    MATH  Google Scholar 

  71. A. Tarski: Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, Monatsh. Math. Phys. 37, 361–404 (1930)

    Article  MathSciNet  Google Scholar 

  72. M. Baaz, P. Hájek, F. Montagna, H. Veith: Complexity of t-tautologies, Ann. Pure Appl. Log. 113, 3–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. P. Hájek: Basic fuzzy logic and BL-algebras II, Soft Comput. 7, 179–183 (2003)

    Article  MATH  Google Scholar 

  74. S. Aguzzoli, A. Ciabattoni: Finiteness in infinite-valued Łukasiewicz logic, J. Log. Lang. Inf. 9, 5–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Aguzzoli, B. Gerla: Finite-valued reductions of infinite-valued logics, Arch. Math. Log. 41, 361–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Aguzzoli, B. Gerla: On countermodels in basic logic, Neural Netw. World 12, 407–420 (2002)

    Google Scholar 

  77. P. Hájek: Arithmetical complexity of fuzzy predicate logics — A survey, Soft Comput. 9(12), 935–941 (2005)

    Article  MATH  Google Scholar 

  78. M. Ragaz: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik, Ph.D. Thesis (Abteilung Mathematik der Eidgenössischen Technischen Hochschule Zürich, Zürich 1981)

    MATH  Google Scholar 

  79. M. Ragaz: Die Unentscheidbarkeit der einstelligen unendlichwertigen Prädikatenlogik, Arch. Math. Log. Grundlagenforsch. 23, 129–139 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  80. F. Montanga: On the predicate logics of continuous t-norm BL-algebras, Arch. Math. Log. 44, 97–114 (2005)

    Article  MathSciNet  Google Scholar 

  81. P. Hájek: Fuzzy logic and arithmetical hierarchy III, Stud. Log. 68, 129–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  82. P. Hájek: Fuzzy logic and arithmetical hierarchy IV, First-Order Logic Revisited, Proc. Conf. FOL75 – 75 Years of First-Order Logic, Berlin, ed. by V. Hendricks (Logos, Berlin 2004) pp. 107–115

    Google Scholar 

  83. F. Montagna: Three complexity problems in quantified fuzzy logic, Stud. Log. 68, 143–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  84. Z. Haniková: Computational complexity of propositional fuzzy logics. In: Handbook of Mathematical Fuzzy Logic, Studies in Logic, Vol. 2, ed. by P. Cintula, P. Hájek, C. Noguera (College, London 2011) pp. 793–851

    Google Scholar 

  85. P. Hájek, F. Montagna, C. Noguera: Computational complexity of first-order fuzzy logics. In: Handbook of Mathematical Fuzzy Logic, Studies in Logic, ed. by P. Cintula, P. Hájek, C. Noguera (College Publ., London 2011) pp. 853–908

    Google Scholar 

  86. P. Cintula, P. Hájek, C. Noguera (Eds.): Handbook of Mathematical Fuzzy Logic, Studies in Logic, Vol. 37 (College Publ., London 2011)

    MATH  Google Scholar 

  87. V. Novák: On fuzzy type theory, Fuzzy Sets Syst. 149(2), 235–273 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  88. V. Novák: Reasoning about mathematical fuzzy logic and its future, Fuzzy Sets Syst. 192, 25–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Gottwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottwald, S. (2015). Many-Valued and Fuzzy Logics. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics