Abstract
In this chapter, we consider particular classes of infinite-valued propositional logics which are strongly related to t-norms as conjunction connectives and to the real unit interval as a set of their truth degrees, and which have their implication connectives determined via an adjointness condition.
Such systems have in the last 10 years been of considerable interest, and the topic of important results. They generalize well-known systems of infinite-valued logic, and form a link to as different areas as, e. g., linear logic and fuzzy set theory.
We survey the most important ones of these systems, always explaining suitable algebraic semantics and adequate formal calculi, but also mentioning complexity issues.
Finally, we mention a type of extension which allows for graded notions of provability and entailment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Łukasiewicz, A. Tarski: Untersuchungen über den Aussagenkalkül, c.r. Séances Soc. Sci. Lett. Vars. cl. III 23, 30–50 (1930)
K. Gödel: Zum intuitionistischen Aussagenkalkül, Anz. Akad. Wiss. Wien: Math.-naturwiss. Kl. 69, 65–66 (1932)
P. Hájek, L. Godo, F. Esteva: A complete many-valued logic with product-conjunction, Arch. Math. Log. 35, 191–208 (1996)
E.L. Post: Introduction to a general theory of elementary propositions, Am. J. Math. 43, 163–185 (1921)
S. Gottwald: A Treatise on Many-Valued Logics, Studies in Logic and Computation, Vol. 9 (Research Studies, Baldock 2001)
M. Dummett: A propositional calculus with denumerable matrix, J. Symb. Log. 24, 97–106 (1959)
C.C. Chang: Algebraic analysis of many valued logics, Trans. Am. Math. Soc. 88, 476–490 (1958)
R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic – Studia Logica Library, Vol. 7 (Kluwer, Dordrecht 2000)
P.C. Rosenbloom: Post algebras. I. postulates and general theory, Am. J. Math. 64, 167–188 (1942)
G. Epstein: The lattice theory of post algebras, Trans. Am. Math. Soc. 95, 300–317 (1960)
N. Cat-Ho: Generalized Post Algebras and Their Applications to Some Infinitary Many-Valued Logics, Diss. Math., Vol. 57 (PWN, Warsaw 1973)
P. Dwinger: Generalized post algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16, 559–563 (1968)
P. Dwinger: A survey of the theory of post algebras and their generalizations. In: Modern Uses of Multiple-Valued Logic, ed. by J.M. Dunn, G. Epstein (Reidel, Dordrecht 1977) pp. 53–75
H. Rasiowa: On generalised post algebras of order $\omega^{+}$ and $\omega^{+}$-valued predicate calculi, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 21, 209–219 (1973)
G. Epstein, H. Rasiowa: Theory and uses of post algebras of order $\omega+\omega^{*}$. Part I, 20th Int. Symp. Multiple-Valued Log., Charlotte/NC 1990 (IEEE Computer Society, New York 1990) pp. 42–47
G. Epstein, H. Rasiowa: Theory and uses of post algebras of order $\omega+\omega^{*}$. Part II, 21st Int. Symp. Multiple-Valued Log., Victoria/B.C., 1991 (IEEE Computer Society, New York 1991) pp. 248–254
D.C. Rine (Ed.): Computer Science and Multiple Valued Logic, 2nd edn. (North-Holland, Amsterdam 1984)
L.A. Zadeh: Fuzzy sets, Inf. Control 8, 338–353 (1965)
B. Schweizer, A. Sklar: Probabilistic Metric Spaces (North-Holland, Amsterdam 1983)
E.P. Klement, R. Mesiar, E. Pap: Triangular Norms (Kluwer, Dordrecht 2000)
C. Alsina, M.J. Frank, B. Schweizer: Associative functions. Triangular Norms and Copulas (World Scientific, Hackensack 2006)
S. Gottwald: Fuzzy Sets and Fuzzy Logic: Foundations of Application – From a Mathematical Point of View. Artificial Intelligence (Verlag Vieweg, Wiesbaden, and Tecnea, Toulouse 1993)
P. Hájek: Metamathematics of Fuzzy Logic, Trends in Logic, Vol. 4 (Kluwer, Dordrecht 1998)
P. Hájek: Basic fuzzy logic and BL-algebras, Soft Comput. 2, 124–128 (1998)
D. Butnariu, E.P. Klement, S. Zafrany: On triangular norm-based propositional fuzzy logics, Fuzzy Sets Syst. 69, 241–255 (1995)
J. Hekrdla, E.P. Klement, M. Navara: Two approaches to fuzzy propositional logics, J. Multiple-Valued Log, Soft Comput. 9, 343–360 (2003)
F. Esteva, L. Godo: Monoidal t-norm based logic: Toward a logic for left-continuous t-norms, Fuzzy Sets Syst. 124, 271–288 (2001)
U. Höhle: On the fundamentals of fuzzy set theory, J. Math. Anal. Appl. 201, 786–826 (1996)
H. Rasiowa: An Algebraic Approach to Non-Classical Logics (North-Holland/PWN, Amsterdam/Warsaw 1974)
R. Cignoli, F. Esteva, L. Godo, A. Torrens: Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Comput. 4, 106–112 (2000)
S. Burris, H.P. Sankappanavar: A Course in Universal Algebra (Springer, New York 1981)
K. Denecke, S.L. Wismath: Universal Algebra and Applications in Theoretical Computer Science (Chapman Hall/CRC, Boca Raton 2002)
Z. Haniková: Standard algebras for fuzzy propositional calculi, Fuzzy Sets Syst. 124, 309–320 (2001)
Z. Haniková: A note on the complexity of propositional logics of individual t-algebras, Neural Netw. World 12, 453–460 (2002)
S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo's logic MTL, Stud. Log. 70, 183–192 (2002)
P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera: Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies, Ann. Pure Appl. Log. 160, 53–81 (2009)
U. Höhle: Presheaves over GL-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory and Decision Library, Series B, Vol. 32, ed. by U. Höhle, E.P. Klement (Kluwer, Dordrecht 1995) pp. 127–157
U. Höhle: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory and Decision Library, Series B, Vol. 32, ed. by U. Höhle, E.P. Klement (Kluwer, Dordrecht 1995) pp. 53–106
F. Esteva, L. Godo, F. Montagna: Equational characterization of the subvarieties of BL generated by t-norm algebras, Stud. Log. 76, 161–200 (2004)
P. Cintula, P. Hájek: Triangular norm based predicate fuzzy logics, Fuzzy Sets Syst. 161, 311–346 (2010)
P. Cintula, P. Hájek: On theories and models in fuzzy predicate logics, J. Symb. Log. 71, 863–880 (2006)
H. Thiele: Theorie der endlichwertigen Łukasiewiczschen Prádikatenkalküle der ersten Stufe, Z. Math. Log. Grundl. Math. 4, 108–142 (1958)
S. Gottwald: A generalized Łukasiewicz-style identity logic. In: Mathematical Logic and Formal Systems, Lecture Notes in Pure and Applied Mathematics, Vol. 94, ed. by L.P. de Alcantara (Marcel Dekker, New York 1985) pp. 183–195
V. Novák, I. Perfilieva, J. Močkoř: Mathematical Principles of Fuzzy Logic (Kluwer, Boston 1999)
R. Bělohlávek, V. Vychodil: Fuzzy Horn logic. I. Proof theory, Arch. Math. Log. 45, 3–51 (2006)
R. Bělohlávek, V. Vychodil: Fuzzy Horn logic. II. Implicationally defined classes, Arch. Math. Log. 45, 149–177 (2006)
M. Baaz: Infinite-valued Gödel logics with 0-1 projections and relativizations. In: Gödel '96, Lecture Notes in Logic, Vol. 6, ed. by P. Hájek (Springer, New York 1996) pp. 23–33
F. Esteva, L. Godo, P. Hájek, M. Navara: Residuated fuzzy logic with an involutive negation, Arch. Math. Log. 39, 103–124 (2000)
S. Gottwald, S. Jenei: A new axiomatization for involutive monoidal t-norm based logic, Fuzzy Sets Syst. 124, 303–307 (2001)
P. Cintula: The ŁΠ and Ł$\Pi\frac{1}{2}$ propositional and predicate logics, Fuzzy Sets Syst. 124, 289–302 (2001)
P. Cintula: An alternative approach to the ŁΠ logic, Neural Netw. World 124, 561–575 (2001)
P. Cintula: Advances in ŁΠ and Ł$\Pi\frac{1}{2}$ logics, Arch. Math. Log. 42, 449–468 (2003)
F. Esteva, L. Godo: Putting together Łukasiewicz and product logics, Mathw. Soft Comput. 6, 219–234 (1999)
F. Esteva, L. Godo, F. Montagna: The ŁΠ and Ł$\Pi\frac{1}{2}$ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, Arch. Math. Log. 40, 39–67 (2001)
P. Agliano, I.M.A. Ferreirim, F. Montagna: Basic hoops: An algebraic study of continuous t-norms, Stud. Log. 87, 73–98 (2007)
F. Esteva, L. Godo, P. Hájek, F. Montagna: Hoops and fuzzy logic, J. Log. Comput. 13, 531–555 (2003)
A. di Nola, G. Georgescu, A. Iorgulescu: Pseudo-BL algebras. I and II, J. Multiple-Valued Log. 8, 671–750 (2002)
P. Flondor, G. Georgescu, A. Iorgulescu: Pseudo t-norms and pseudo-BL algebras, Soft Comput. 5, 355–371 (2001)
P. Hájek: Embedding standard BL-algebras into non-commutative pseudo-BL-algebras, Tatra Mt. Math. Publ. 27, 125–130 (2003)
P. Hájek: Fuzzy logics with non-commutative conjunctions, J. Log. Comput. 13, 469–479 (2003)
P. Hájek: Observations on non-commutative fuzzy logics, Soft Comput. 8, 28–43 (2003)
S. Jenei, F. Montagna: A proof of standard completeness for non-commutative monoidal t-norm logic, Neural Netw. World 13, 481–488 (2003)
J. Kühr: Pseudo-BL algebras and PRl-monoids, Math. Bohem. 128, 199–208 (2003)
P. Hájek: Fleas and fuzzy logic, J. Multiple-Valued Log. Soft Comput. 11, 137–152 (2005)
J. Pavelka: On fuzzy logic. Part I, Z. Math. Log. Grundl. Math. 25, 45–52 (1979)
J. Pavelka: On fuzzy logic. Part II, Z. Math. Log. Grundl. Math. 25, 119–134 (1979)
J. Pavelka: On fuzzy logic. Part III, Z. Math. Log. Grundl. Math. 25, 447–464 (1979)
P. Hájek, J. Paris, J. Shepherdson: Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic, J. Symb. Log. 65, 669–682 (2000)
E. Turunen: Well-defined fuzzy sentential logic, Math. Log. Quart. 41, 236–248 (1995)
G. Gerla: Fuzzy logic, Mathematical Tools for Approximate Reasoning, Trends in Logic, Vol. 11 (Kluwer, Dordrecht 2001)
A. Tarski: Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, Monatsh. Math. Phys. 37, 361–404 (1930)
M. Baaz, P. Hájek, F. Montagna, H. Veith: Complexity of t-tautologies, Ann. Pure Appl. Log. 113, 3–11 (2002)
P. Hájek: Basic fuzzy logic and BL-algebras II, Soft Comput. 7, 179–183 (2003)
S. Aguzzoli, A. Ciabattoni: Finiteness in infinite-valued Łukasiewicz logic, J. Log. Lang. Inf. 9, 5–29 (2000)
S. Aguzzoli, B. Gerla: Finite-valued reductions of infinite-valued logics, Arch. Math. Log. 41, 361–399 (2002)
S. Aguzzoli, B. Gerla: On countermodels in basic logic, Neural Netw. World 12, 407–420 (2002)
P. Hájek: Arithmetical complexity of fuzzy predicate logics — A survey, Soft Comput. 9(12), 935–941 (2005)
M. Ragaz: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik, Ph.D. Thesis (Abteilung Mathematik der Eidgenössischen Technischen Hochschule Zürich, Zürich 1981)
M. Ragaz: Die Unentscheidbarkeit der einstelligen unendlichwertigen Prädikatenlogik, Arch. Math. Log. Grundlagenforsch. 23, 129–139 (1983)
F. Montanga: On the predicate logics of continuous t-norm BL-algebras, Arch. Math. Log. 44, 97–114 (2005)
P. Hájek: Fuzzy logic and arithmetical hierarchy III, Stud. Log. 68, 129–142 (2001)
P. Hájek: Fuzzy logic and arithmetical hierarchy IV, First-Order Logic Revisited, Proc. Conf. FOL75 – 75 Years of First-Order Logic, Berlin, ed. by V. Hendricks (Logos, Berlin 2004) pp. 107–115
F. Montagna: Three complexity problems in quantified fuzzy logic, Stud. Log. 68, 143–152 (2001)
Z. Haniková: Computational complexity of propositional fuzzy logics. In: Handbook of Mathematical Fuzzy Logic, Studies in Logic, Vol. 2, ed. by P. Cintula, P. Hájek, C. Noguera (College, London 2011) pp. 793–851
P. Hájek, F. Montagna, C. Noguera: Computational complexity of first-order fuzzy logics. In: Handbook of Mathematical Fuzzy Logic, Studies in Logic, ed. by P. Cintula, P. Hájek, C. Noguera (College Publ., London 2011) pp. 853–908
P. Cintula, P. Hájek, C. Noguera (Eds.): Handbook of Mathematical Fuzzy Logic, Studies in Logic, Vol. 37 (College Publ., London 2011)
V. Novák: On fuzzy type theory, Fuzzy Sets Syst. 149(2), 235–273 (2005)
V. Novák: Reasoning about mathematical fuzzy logic and its future, Fuzzy Sets Syst. 192, 25–44 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gottwald, S. (2015). Many-Valued and Fuzzy Logics. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)