Abstract
Rule induction is an important technique in data mining or machine learning. Knowledge is frequently expressed by rules in many areas of artificial intelligence (GlossaryTerm
AI
), including rule-based expert systems. In this chapter we discuss only supervised learning in which all cases of the input data set are pre-classified by an expert.Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AI:
-
artificial intelligence
- LEM:
-
learning from examples module
- LERS:
-
learning from examples using rough sets
- MLEM2:
-
modified LEM2 algorithm
References
Z. Pawlak: Rough sets, Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Z. Pawlak: Rough Sets. Theoretical Aspects of Reasoning about Data (Kluwer Academic, Boston 1991)
J.W. Grzymala-Busse: Rule induction. In: Data Mining and Knowledge Discovery Handbook, Second Edition, ed. by O. Maimon, L. Rokach (Springer, Berlin, Heidelberg 2010) pp. 249–265
Z. Pawlak, J.W. Grzymala-Busse, R. Slowinski, W. Ziarko: Rough sets, Commun. ACM 38, 89–95 (1995)
J.G. Bazan, M.S. Szczuka, A. Wojna, M. Wojnarski: On the evolution of rough set exploration system. In: Rough Sets and Current Trends in Computing, ed. by S. Tsumoto, R. Słowiński, J. Komorowski, J.W. Grzymala-Busse (Springer, Berlin, Heidelberg 2004) pp. 592–601
J.W. Grzymala-Busse: LERS – A system for learning from examples based on rough sets. In: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, ed. by R. Slowinski (Kluwer Academic, Boston 1992) pp. 3–18
J. Stefanowski: Algorithms of Decision Rule Induction in Data Mining (Poznan University of Technology Press, Poznan 2001)
L.B. Booker, D.E. Goldberg, J.F. Holland: Classifier systems and genetic algorithms. In: Machine Learning. Paradigms and Methods, ed. by J.G. Carbonell (MIT Press, Cambridge 1990) pp. 235–282
J.H. Holland, K.J. Holyoak, R.E. Nisbett, P.R. Thagard: Induction. Processes of Inference, Learning, and Discovery (MIT Press, Cambridge 1986)
M.R. Chmielewski, J.W. Grzymala-Busse: Global discretization of continuous attributes as preprocessing for machine learning, Int. J. Approx. Reason. 15(4), 319–331 (1996)
J.W. Grzymala-Busse: Discretization of numerical attributes. In: Handbook of Data Mining and Knowledge Discovery, ed. by W. Kloesgen, J. Zytkow (Oxford Univ. Press, Oxford 2002) pp. 218–225
J.W. Grzymala-Busse: Mining numerical data – A rough set approach, Trans. Rough Sets 11, 1–13 (2010)
J.W. Grzymala-Busse: MLEM2: A new algorithm for rule induction from imperfect data, Proc. 9th Int. Conf. Inform. Proc. Manag. Uncertain. Knowl.-Based Syst. (2002) pp. 243–250
J.W. Grzymala-Busse: Data with missing attribute values: Generalization of indiscernibility relation and rule induction, Trans. Rough Sets 1, 78–95 (2004)
J.W. Grzymala-Busse: Rough set strategies to data with missing attribute values, Proc. Workshop Found. New Dir. Data Min. (2003) pp. 56–63
J.W. Grzymala-Busse: Characteristic relations for incomplete data: A generalization of the indiscernibility relation. In: Rough Sets and Current Trends in Computing, ed. by S. Tsumoto, R. Słowiński, J. Komorowski, J.W. Grzymala-Busse (Springer, Berlin, Heidelberg 2004) pp. 244–253
T.Y. Lin: Topological and fuzzy rough sets. In: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, ed. by R. Slowinski (Kluwer Academic, Boston 1992) pp. 287–304
R. Slowinski, D. Vanderpooten: A generalized definition of rough approximations based on similarity, IEEE Trans. Knowl. Data Eng. 12, 331–336 (2000)
J.W. Grzymala-Busse, W. Ziarko: Data mining based on rough sets. In: Data Mining: Opportunities and Challenges, ed. by J. Wang (Idea Group, Hershey 2003) pp. 142–173
J.W. Grzymala-Busse, Y. Yao: Probabilistic rule induction with the LERS data mining system, Int. J. Intell. Syst. 26, 518–539 (2011)
Z. Pawlak, A. Skowron: Rough sets: Some extensions, Inf. Sci. 177, 28–40 (2007)
Z. Pawlak, S.K.M. Wong, W. Ziarko: Rough sets: probabilistic versus deterministic approach, Int. J. Man-Mach. Stud. 29, 81–95 (1988)
Y.Y. Yao: Probabilistic rough set approximations, Int. J. Approx. Reason. 49, 255–271 (2008)
Y.Y. Yao, S.K.M. Wong: A decision theoretic framework for approximate concepts, Int. J. Man-Mach. Stud. 37, 793–809 (1992)
W. Ziarko: Variable precision rough set model, J. Comput. Syst. Sci. 46(1), 39–59 (1993)
W. Ziarko: Probabilistic approach to rough sets, Int. J. Approx. Reason. 49, 272–284 (2008)
P.G. Clark, J.W. Grzymala-Busse: Experiments on probabilistic approximations, IEEE Int. Conf. Granul. Comput. (2011) pp. 144–149
P.G. Clark, J.W. Grzymala-Busse, M. Kuehnhausen: Local probabilistic approximations for incomplete data, Lect. Notes Comput. Sci. 7661, 93–98 (2012)
J.W. Grzymala-Busse, W. Rzasa: A local version of the MLEM2 algorithm for rule induction, Fundam. Inform. 100, 99–116 (2010)
C. Cohagan, J.W. Grzymala-Busse, Z.S. Hippe: Experiments on mining inconsistent data with bagging and the MLEM2 rule induction algorithm, Int. J. Granul. Comput. Rough Sets Intell. Syst. 2, 257–271 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Grzymala-Busse, J.W. (2015). Rule Induction from Rough Approximations. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)