Abstract
In this chapter, we focus on two important areas in neural computation, i. e., deep and modular neural networks, given the fact that both deep and modular neural networks are among the most powerful machine learning and pattern recognition techniques for complex GlossaryTerm
AI
problem solving. We begin by providing a general overview of deep and modular neural networks to describe the general motivation behind such neural architectures and fundamental requirements imposed by complex GlossaryTermAI
problems. Next, we describe background and motivation, methodologies, major building blocks, and the state-of-the-art hybrid learning strategy in context of deep neural architectures. Then, we describe background and motivation, taxonomy, and learning algorithms pertaining to various typical modular neural networks in a wide context. Furthermore, we also examine relevant issues and discuss open problems in deep and modular neural network research areas.Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AI:
-
artificial intelligence
- BP:
-
back-propagation
- CAE:
-
contrastive auto-encoder
- CD:
-
contrastive divergence
- CNS:
-
central nervous system
- DAE:
-
denoising auto-encoder
- DBN:
-
deep belief network
- DNN:
-
deep neural network
- EM:
-
expectation maximization
- FMM:
-
finite mixture model
- GPU:
-
graphics processing unit
- GRBM:
-
Gaussian RBM
- IRLS:
-
iteratively re-weighted least squares
- ML:
-
machine learning
- MLP:
-
multilayer perceptron
- MNN:
-
modular neural network
- MoE:
-
mixture of experts
- MSE:
-
mean square error
- NCL:
-
negative correlation learning
- NC:
-
neural computation
- NN:
-
neural network
- PoE:
-
product of experts
- PSD:
-
predictive sparse decomposition
- RBF:
-
radial basis function
- RBM:
-
Boltzmann machine
- SAE:
-
sparse auto-encoder
- SVM:
-
support vector machine
References
E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principle of Neural Science, 4th edn. (McGraw-Hill, New York 2000)
G.M. Edelman: Neural Darwinism: Theory of Neural Group Selection (Basic Books, New York 1987)
J.A. Fodor: The Modularity of Mind (MIT Press, Cambridge 1983)
F. Azam: Biologically inspired modular neural networks, Ph.D. Thesis (School of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg 2000)
G. Auda, M. Kamel: Modular neural networks: A survey, Int. J. Neural Syst. 9(2), 129–151 (1999)
D.C. Van Essen, C.H. Anderson, D.J. Fellman: Information processing in the primate visual system, Science 255, 419–423 (1992)
J.H. Kaas: Why does the brain have so many visual areas?, J. Cogn. Neurosci. 1(2), 121–135 (1989)
G. Bugmann: Biologically plausible neural computation, Biosystems 40(1), 11–19 (1997)
S. Haykin: Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, New York 2009)
M. Minsky, S. Papert: Perceptrons (MIT Press, Cambridge 1969)
D.E. Rumelhurt, G.E. Hinton, R.J. Williams: Learning internal representations by error propagation, Nature 323, 533–536 (1986)
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient based learning applied to document recognition, Proc. IEEE 86(9), 2278–2324 (1998)
G. Tesauro: Practical issues in temporal difference learning, Mach. Learn. 8(2), 257–277 (1992)
G. Cybenko: Approximations by superpositions of sigmoidal functions, Math. Control Signals Syst. 2(4), 302–314 (1989)
N. Cristianini, J. Shawe-Taylor: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridge 2000)
Y. Bengio, Y. LeCun: Scaling learning algorithms towards AI. In: Large-Scale Kernel Machines, ed. by L. Bottou, O. Chapelle, D. DeCoste, J. Weston (MIT Press, Cambridge 2006), Chap. 14
Y. Bengio: Learning deep architectures for AI, Found. Trends Mach. Learn. 2(1), 1–127 (2009)
G.E. Hinton, S. Osindero, Y. Teh: A fast learning algorithm for deep belief nets, Neural Comput. 18(9), 1527–1554 (2006)
Y. Bengio: Deep learning of representations for unsupervised and transfer learning, JMLR: Workshop Conf. Proc., Vol. 7 (2011) pp. 1–20
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, Y. Bengio: An empirical evaluation of deep architectures on problems with many factors of variation, Proc. Int. Conf. Mach. Learn. (ICML) (2007) pp. 473–480
R. Salakhutdinov, G.E. Hinton: Learning a nonlinear embedding by preserving class neighbourhood structure, Proc. Int. Conf. Artif. Intell. Stat. (AISTATS) (2007)
H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin: Exploring strategies for training deep neural networks, J. Mach. Learn. Res. 10(1), 1–40 (2009)
W.K. Wong, M. Sun: Deep learning regularized Fisher mappings, IEEE Trans. Neural Netw. 22(10), 1668–1675 (2011)
S. Osindero, G.E. Hinton: Modeling image patches with a directed hierarchy of Markov random field, Adv. Neural Inf. Process. Syst. (NIPS) (2007) pp. 1121–1128
I. Levner: Data driven object segmentation, Ph.D. Thesis (Department of Computer Science, University of Alberta, Edmonton 2008)
H. Mobahi, R. Collobert, J. Weston: Deep learning from temporal coherence in video, Proc. Int. Conf. Mach. Learn. (ICML) (2009) pp. 737–744
H. Lee, Y. Largman, P. Pham, A. Ng: Unsupervised feature learning for audio classification using convolutional deep belief networks, Adv. Neural Inf. Process. Syst. (NIPS) (2009)
K. Chen, A. Salman: Learning speaker-specific characteristics with a deep neural architecture, IEEE Trans. Neural Netw. 22(11), 1744–1756 (2011)
K. Chen, A. Salman: Extracting speaker-specific information with a regularized Siamese deep network, Adv. Neural Inf. Process. Syst. (NIPS) (2011)
A. Mohamed, G.E. Dahl, G.E. Hinton: Acoustic modeling using deep belief networks, IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)
G.E. Dahl, D. Yu, L. Deng, A. Acero: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)
R. Salakhutdinov, G.E. Hinton: Semantic hashing, Proc. SIGIR Workshop Inf. Retr. Appl. Graph. Model. (2007)
M. Ranzato, M. Szummer: Semi-supervised learning of compact document representations with deep networks, Proc. Int. Conf. Mach. Learn. (ICML) (2008)
A. Torralba, R. Fergus, Y. Weiss: Small codes and large databases for recognition, Proc. Int. Conf. Comput. Vis. Pattern Recogn. (CVPR) (2008) pp. 1–8
R. Collobert, J. Weston: A unified architecture for natural language processing: Deep neural networks with multitask learning, Proc. Int. Conf. Mach. Learn. (ICML) (2008)
A. Mnih, G.E. Hinton: A scalable hierarchical distributed language model, Adv. Neural Inf. Process. Syst. (NIPS) (2008)
J. Weston, F. Ratle, R. Collobert: Deep learning via semi-supervised embedding, Proc. Int. Conf. Mach. Learn. (ICML) (2008)
R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, Y. LeCun: Deep belief net learning in a long-range vision system for autonomous offroad driving, Proc. Intell. Robots Syst. (IROS) (2008) pp. 628–633
Y. Bengio, A. Courville, P. Vincent: Representation learning: A review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1827 (2013)
Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst. (NIPS) (2006)
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res. 11, 3371–3408 (2010)
G.E. Hinton: Training products of experts by minimizing contrastive divergence, Neural Comput. 14(10), 1771–1800 (2002)
K. Kavukcuoglu, M. Ranzato, Y. LeCun: Fast inference in sparse coding algorithms with applications to object recognition. CoRR, arXiv:1010.3467 (2010)
B.A. Olshausen, D.J. Field: Sparse coding with an overcomplete basis set: A strategy employed by V1?, Vis. Res. 37, 3311–3325 (1997)
S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio: Contracting auto-encoders: Explicit invariance during feature extraction, Proc. Int. Conf. Mach. Learn. (ICML) (2011)
S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, X. Glorot: Higher order contractive auto-encoder, Proc. Eur. Conf. Mach. Learn. (ECML) (2011)
M. Ranzato, C. Poultney, S. Chopra, Y. LeCun: Efficient learning of sparse representations with an energy based model, Adv. Neural Inf. Process. Syst. (NIPS) (2006)
M. Ranzato, Y. Boureau, Y. LeCun: Sparse feature learning for deep belief networks, Adv. Neural Inf. Process. Syst. (NIPS) (2007)
G.E. Hinton, R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313, 504–507 (2006)
K. Cho, A. Ilin, T. Raiko: Improved learning of Gaussian-Bernoulli restricted Boltzmann machines, Proc. Int. Conf. Artif. Neural Netw. (ICANN) (2011)
D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, S. Bengio: Why does unsupervised pretraining help deep learning?, J. Mach. Learn. Res. 11, 625–660 (2010)
D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber: Deep big simple neural nets for handwritten digit recognition, Neural Comput. 22(1), 1–14 (2010)
M. Ranzato, A. Krizhevsky, G.E. Hinton: Factored 3-way restricted Boltzmann machines for modeling natural images, Proc. Int. Conf. Artif. Intell. Stat. (AISTATS) (2010) pp. 621–628
M. Ranzato, V. Mnih, G.E. Hinton: Generating more realistic images using gated MRF's, Adv. Neural Inf. Process. Syst. (NIPS) (2010)
A. Courville, J. Bergstra, Y. Bengio: Unsupervised models of images by spike-and-slab RBMs, Proc. Int. Conf. Mach. Learn. (ICML) (2011)
H. Lee, R. Grosse, R. Ranganath, A.Y. Ng: Unsupervised learning of hierarchical representations with convolutional deep belief networks, Commun. ACM 54(10), 95–103 (2011)
D. Hau, K. Chen: Exploring hierarchical speech representations with a deep convolutional neural network, Proc. U.K. Workshop Comput. Intell. (UKCI) (2011)
Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng: Building high-level features using large scale unsupervised learning, Proc. Int. Conf. Mach. Learn. (ICML) (2012)
S.E. Yuksel, J.N. Wilson, P.D. Gader: Twenty years of mixture of experts, IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1177–1193 (2012)
A. Krogh, J. Vedelsby: Neural network ensembles, cross validation, and active learning, Adv. Neural Inf. Process. Syst. (NIPS) (1995)
N. Ueda, R. Nakano: Generalization error of ensemble estimators, Proc. Int. Conf. Neural Netw. (ICNN) (1996) pp. 90–95
L.I. Kuncheva: Combining Pattern Classifiers (Wiley-Interscience, Hoboken 2004)
R.A. Jacobs, M.I. Jordan, S. Nowlan, G.E. Hinton: Adaptive mixture of local experts, Neural Comput. 3(1), 79–87 (1991)
M.I. Jordan, R.A. Jacobs: Hierarchical mixture of experts and the EM algorithm, Neural Comput. 6(2), 181–214 (1994)
Y. Liu, X. Yao: Simultaneous training of negatively correlated neural networks in an ensemble, IEEE Trans. Syst. Man Cybern. B 29(6), 716–725 (1999)
K. Chen, L. Xu, H.S. Chi: Improved learning algorithms for mixture of experts in multi-class classification, Neural Netw. 12(9), 1229–1252 (1999)
L.K. Hansen, P. Salamon: Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)
M.P. Perrone, L.N. Cooper: Ensemble methods for hybrid neural networks. In: Artificial Neural Networks for Speech and Vision, ed. by R.J. Mammone (Chapman-Hall, New York 1993) pp. 126–142
T.K. Ho: The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 823–844 (1998)
K. Chen, L. Wang, H.S. Chi: Methods of combining multiple classifiers with different feature sets and their applications to text-independent speaker identification, Int. J. Pattern Recogn. Artif. Intell. 11(3), 417–445 (1997)
J. Kittler, M. Hatef, R.P.W. Duin, J. Matas: On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)
D.H. Wolpert: Stacked generalization, Neural Netw. 2(3), 241–259 (1992)
L. Xu, M.I. Jordan, G.E. Hinton: An alternative model for mixtures of experts, Adv. Neural Inf. Process. Syst. (NIPS) (1995)
L. Xu, A. Krzyzak, C.Y. Suen: Associative switch for combining multiple classifiers, J. Artif. Neural Netw. 1(1), 77–100 (1994)
K. Chen: A connectionist method for pattern classification with diverse feature sets, Pattern Recogn. Lett. 19(7), 545–558 (1998)
K. Chen, H.S. Chi: A method of combining multiple probabilistic classifiers through soft competition on different feature sets, Neurocomputing 20(1–3), 227–252 (1998)
K. Chen: On the use of different representations for speaker modeling, IEEE Trans. Syst. Man Cybern. C 35(3), 328–346 (2005)
Y. Yang, K. Chen: Temporal data clustering via weighted clustering ensemble with different representations, IEEE Trans. Knowl. Data Eng. 23(2), 307–320 (2011)
Y. Yang, K. Chen: Time series clustering via RPCL ensemble networks with different representations, IEEE Trans. Syst. Man Cybern. C 41(2), 190–199 (2011)
L. Xu, A. Krzyzak, C.Y. Suen: Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans. Syst. Man Cybern. 22(3), 418–435 (1992)
K. Chen, X. Yu, H.S. Chi: Combining linear discriminant functions with neural networks for supervised learning, Neural Comput. Appl. 6(1), 19–41 (1997)
K. Chen, L.P. Yang, X. Yu, H.S. Chi: A self-generating modular neural network architecture for supervised learning, Neurocomputing 16(1), 33–48 (1997)
B.L. Lu, M. Ito: Task decomposition and module combination based on class relations: A modular neural network for pattern classification, IEEE Trans. Neural Netw. Learn. Syst. 10(5), 1244–1256 (1999)
L. Cao: Support vector machines experts for time series forecasting, Neurocomputing 51(3), 321–339 (2003)
T.G. Dietterich: Ensemble learning. In: Handbook of Brain Theory and Neural Networks, ed. by M.A. Arbib (MIT Press, Cambridge 2002) pp. 405–408
Y. Freund, R.E. Schapire: Experiments with a new boosting algorithm, Proc. Int. Conf. Mach. Learn. (ICML) (1996) pp. 148–156
L. Breiman: Bagging predictors, Mach. Learn. 24(2), 123–140 (1996)
H. Schwenk, Y. Bengio: Boosting neural networks, Neural Comput. 12(8), 1869–1887 (2000)
J. Wang, V. Saligrama: Local supervised learning through space partitioning, Adv. Neural Inf. Process. Syst. (NIPS) (2012)
X.J. Zhu: Semi-supervised learning literature survey, Technical Report, School of Computer Science (University of Wisconsin, Madison 2008)
J. Ghosh, A. Acharya: Cluster ensembles, WIREs Data Min. Knowl. Discov. 1(2), 305–315 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chen, K. (2015). Deep and Modular Neural Networks. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)