Abstract
This chapter provides an overview of possibility theory, emphasizing its historical roots and its recent developments. Possibility theory lies at the crossroads between fuzzy sets, probability, and nonmonotonic reasoning. Possibility theory can be cast either in an ordinal or in a numerical setting. Qualitative possibility theory is closely related to belief revision theory, and commonsense reasoning with exception-tainted knowledge in artificial intelligence. Possibilistic logic provides a rich representation setting, which enables the handling of lower bounds of possibility theory measures, while remaining close to classical logic. Qualitative possibility theory has been axiomatically justified in a decision-theoretic framework in the style of Savage, thus providing a foundation for qualitative decision theory. Quantitative possibility theory is the simplest framework for statistical reasoning with imprecise probabilities. As such, it has close connections with random set theory and confidence intervals, and can provide a tool for uncertainty propagation with limited statistical or subjective information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- ASP:
-
answer-set programming
- CBR:
-
case-based reasoning
- CP net:
-
conditional preference network
- FCA:
-
formal concept analysis
- MEL:
-
minimal epistemic logic
- PERT:
-
program evaluation and review technique
References
L.A. Zadeh: Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst. 1, 3–28 (1978)
B.R. Gaines, L. Kohout: Possible automata, Proc. Int. Symp. Multiple-Valued Logics (Bloomington, Indiana 1975) pp. 183–196
D. Dubois, H. Prade: Possibility Theory (Plenum, New York 1988)
D. Dubois, H.T. Nguyen, H. Prade: Fuzzy sets and probability: Misunderstandings, bridges and gaps. In: Fundamentals of Fuzzy Sets, ed. by D. Dubois, H. Prade (Kluwer, Boston 2000) pp. 343–438, see also the bibliography in http://www.scholarpedia.org/article/Possibility_theory)
D. Dubois, H. Prade: Possibility theory: Qualitative and quantitative aspects. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 1, ed. by D.M. Gabbay, P. Smets (Kluwer, Dordrecht 1998) pp. 169–226
D. Dubois, H. Fargier, H. Prade: Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty, Appl. Intell. 6, 287–309 (1996)
S. Benferhat, D. Dubois, S. Kaci, H. Prade: Modeling positive and negative information in possibility theory, Int. J. Intell. Syst. 23, 1094–1118 (2008)
D. Dubois, H. Prade: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory, Fuzzy Set. Syst. 160, 1355–1366 (2009)
W. Spohn: Ordinal conditional functions: A dynamic theory of epistemic states. In: Causation in Decision, Belief Change, and Statistics, Vol. 2, ed. by W.L. Harper, B. Skyrms (Kluwer, Dordrecht 1988) pp. 105–134
W. Spohn: The Laws of Belief: Ranking Theory and its Philosophical Applications (Oxford Univ. Press, Oxford 2012)
I.M. Bocheński: La Logique de Théophraste (Librairie de l'Université de Fribourg en Suisse, Fribourg 1947)
B.F. Chellas: Modal Logic, an Introduction (Cambridge Univ. Press, Cambridge 1980)
G.L.S. Shackle: Decision, Order and Time in Human Affairs, 2nd edn. (Cambridge Univ. Press, Cambridge 1961)
D.L. Lewis: Counterfactuals (Basil Blackwell, Oxford 1973)
D. Dubois: Belief structures, possibility theory and decomposable measures on finite sets, Comput. Artif. Intell. 5, 403–416 (1986)
T. Sudkamp: Similarity and the measurement of possibility, Actes Rencontres Francophones sur la Logique Floue et ses Applications (Cepadues Editions, Toulouse 2002) pp. 13–26
L.J. Cohen: The Probable and the Provable (Clarendon, Oxford 1977)
L.A. Zadeh: Fuzzy sets and information granularity. In: Advances in Fuzzy Set Theory and Applications, ed. by M.M. Gupta, R. Ragade, R.R. Yager (Amsterdam, North-Holland 1979) pp. 3–18
L.A. Zadeh: Possibility theory and soft data analysis. In: Mathematical Frontiers of Social and Policy Sciences, ed. by L. Cobb, R. Thrall (Westview, Boulder 1982) pp. 69–129
D. Dubois, H. Prade: Fuzzy Sets and Systems: Theory and Applications (Academic Press, New York 1980)
G.J. Klir, T. Folger: Fuzzy Sets, Uncertainty and Information (Prentice Hall, Englewood Cliffs 1988)
D. Dubois, H. Prade: Possibility theory and formal concept analysis: Characterizing independent sub-contexts, Fuzzy Set. Syst. 196, 4–16 (2012)
R.R. Yager: An introduction to applications of possibility theory, Hum. Syst. Manag. 3, 246–269 (1983)
R.R. Yager: A foundation for a theory of possibility, Cybern. Syst. 10(1–3), 177–204 (1980)
E.P. Klement, R. Mesiar, E. Pap: Triangular Norms (Kluwer, Dordrecht 2000)
G. Coletti, B. Vantaggi: Comparative models ruled by possibility and necessity: A conditional world, Int. J. Approx. Reason. 45(2), 341–363 (2007)
G. Coletti, B. Vantaggi: T-conditional possibilities: Coherence and inference, Fuzzy Set. Syst. 160(3), 306–324 (2009)
B. De Baets, E. Tsiporkova, R. Mesiar: Conditioning in possibility with strict order norms, Fuzzy Set. Syst. 106, 221–229 (1999)
G. De Cooman: Possibility theory. Part I: Measure- and integral-theoretic groundwork; Part II: Conditional possibility; Part III: Possibilistic independence, Int. J. Gen. Syst. 25, 291–371 (1997)
L.M. De Campos, J.F. Huete: Independence concepts in possibility theory, Fuzzy Set. Syst. 103, 487–506 (1999)
D. Dubois, L. del Farinas Cerro, A. Herzig, H. Prade: Qualitative relevance and independence: A roadmap, Proc. 15th Int. Jt. Conf. Artif. Intell. Nagoya (1997) pp. 62–67
N. Ben Amor, K. Mellouli, S. Benferhat, D. Dubois, H. Prade: A theoretical framework for possibilistic independence in a weakly ordered setting, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 117–155 (2002)
D. Dubois, E. Kerre, R. Mesiar, H. Prade: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, ed. by D. Dubois, H. Prade (Kluwer, Boston 2000) pp. 483–581
D. Dubois, H. Prade: Possibility theory as a basis for preference propagation in automated reasoning, Proc. 1st IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE'92), San Diego (1992) pp. 821–832
D. Dubois, P. Hájek, H. Prade: Knowledge-driven versus data-driven logics, J. Log. Lang. Inform. 9, 65–89 (2000)
D. Dubois, H. Prade: Possibility theory, probability theory and multiple-valued logics: A clarification, Ann. Math. Artif. Intell. 32, 35–66 (2001)
M. Banerjee, D. Dubois: A simple modal logic for reasoning about revealed beliefs, Lect. Notes Artif. Intell. 5590, 805–816 (2009)
M. Banerjee, D. Dubois: A simple logic for reasoning about incomplete knowledge, Int. J. Approx. Reason. 55, 639–653 (2014)
D. Dubois, H. Prade: Epistemic entrenchment and possibilistic logic, Artif. Intell. 50, 223–239 (1991)
P. Gärdenfors: Knowledge in Flux (MIT Press, Cambridge 1988)
D. Dubois, H. Prade: Belief change and possibility theory. In: Belief Revision, ed. by P. Gärdenfors (Cambridge Univ. Press, Cambridge 1992) pp. 142–182
D. Lehmann, M. Magidor: What does a conditional knowledge base entail?, Artif. Intell. 55, 1–60 (1992)
D. Dubois, H. Fargier, H. Prade: Ordinal and probabilistic representations of acceptance, J. Artif. Intell. Res. 22, 23–56 (2004)
S. Benferhat, D. Dubois, H. Prade: Nonmonotonic reasoning, conditional objects and possibility theory, Artif. Intell. 92, 259–276 (1997)
J. Pearl: System Z: A natural ordering of defaults with tractable applications to default reasoning, Proc. 3rd Conf. Theor. Aspects Reason. About Knowl. (Morgan Kaufmann, San Francisco 1990) pp. 121–135
E. Raufaste, R. Da Silva Neves, C. Mariné: Testing the descriptive validity of possibility theory in human judgements of uncertainty, Artif. Intell. 148, 197–218 (2003)
H. Farreny, H. Prade: Default and inexact reasoning with possibility degrees, IEEE Trans. Syst. Man Cybern. 16(2), 270–276 (1986)
D. Dubois, J. Lang, H. Prade: Possibilistic logic. In: Handbook of Logic in AI and Logic Programming, Vol. 3, ed. by D.M. Gabbay (Oxford Univ. Press, Oxford 1994) pp. 439–513
D. Dubois, H. Prade: Possibilistic logic: A retrospective and prospective view, Fuzzy Set. Syst. 144, 3–23 (2004)
J. Lang: Possibilistic logic: Complexity and algorithms. In: Algorithms for Uncertainty and Defeasible Reasoning, (Kluwer, Dordrecht 2001) pp. 179–220
S. Benferhat, D. Dubois, H. Prade: Practical handling of exception-tainted rules and independence information in possibilistic logic, Appl. Intell. 9, 101–127 (1998)
S. Benferhat, S. Yahi, H. Drias: A new default theories compilation for MSP-entailment, J. Autom. Reason. 45(1), 39–59 (2010)
S. Benferhat, S. Lagrue, O. Papini: Reasoning with partially ordered information in a possibilistic logic framework, Fuzzy Set. Syst. 144, 25–41 (2004)
S. Benferhat, H. Prade: Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic, Proc. 9th Int. Jt. Conf. Artif. Intell. (IJCAI'05) (2005) pp. 1281–1286
S. Benferhat, H. Prade: Compiling possibilistic knowledge bases, Proc. 17th Eur. Conf. Artif. Intell. (Riva del Garda, Italy 2006)
D. Dubois, S. Konieczny, H. Prade: Quasi-possibilistic logic and its measures of information and conflict, Fundam. Inform. 57, 101–125 (2003)
D. Dubois, F. Esteva, L. Godo, H. Prade: Fuzzy-set based logics – An history-oriented presentation of their main developments. In: Handbook of the History of Logic, the Many-Valued and Nonmonotonic Turn in Logic, Vol. 8, ed. by D.M. Gabbay, J. Woods (Elsevier, Amsterdam 2007) pp. 325–449
L. Boldrin, C. Sossai: Local possibilistic logic, J. Appl. Non-Class. Log. 7, 309–333 (1997)
P. Dellunde, L. Godo, E. Marchioni: Extending possibilistic logic over Gödel logic, Int. J. Approx. Reason. 52, 63–75 (2011)
P. Hájek, D. Harmancová, R. Verbrugge: A qualitative fuzzy possibilistic logic, Int. J. Approx. Reason. 12(1), 1–19 (1995)
S. Lehmke: Logics which Allow Degrees of Truth and Degrees of Validity, Ph.D. Thesis (Universität Dortmund, Germany 2001)
L.A. Zadeh: Fuzzy logic and approximate reasoning (In memory of Grigore Moisil), Synthese 30, 407–428 (1975)
D. Dubois, H. Prade, S. Sandri: A. Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers. In: Logic Programming and Soft Computing, ed. by T.P. Martin, F. Arcelli-Fontana (Research Studies Press Ltd., Baldock, England 1998) pp. 69–90
T. Alsinet, L. Godo: Towards an automated deduction system for first-order possibilistic logic programming with fuzzy constants, Int. J. Intell. Syst. 17, 887–924 (2002)
T. Alsinet: Logic Programming with Fuzzy Unification and Imprecise Constants: Possibilistic Semantics and Automated Deduction, Ph.D. Thesis (Technical University of Catalunya, Barcelona 2001)
T. Alsinet, L. Godo, S. Sandri: Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: A comparative description, Electr. Notes Theor. Comput. Sci. 66(5), 1–21 (2002)
T. Alsinet, L. Godo: Adding similarity-based reasoning capabilities to a Horn fragment of possibilistic logic with fuzzy constants, Fuzzy Set. Syst. 144, 43–65 (2004)
T. Alsinet, C. Chesñevar, L. Godo, S. Sandri, G. Simari: Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification, Int. J. Approx. Reason. 48, 711–729 (2008)
T. Alsinet, C. Chesñevar, L. Godo, G. Simari: A logic programming framework for possibilistic argumentation: Formalization and logical properties, Fuzzy Set. Syst. 159(10), 1208–1228 (2008)
P. Nicolas, L. Garcia, I. Stéphan, C. Lefèvre: Possibilistic uncertainty handling for answer set programming, Ann. Math. Artif. Intell. 47(1/2), 139–181 (2006)
K. Bauters, S. Schockaert, M. De Cock, D. Vermeir: Possibilistic answer set programming revisited, Proc. 26th Conf. Uncertainty in Artif. Intell. (UAI'10), Catalina Island (2010) pp. 48–55
W. Spohn: A general, nonprobabilistic theory of inductive reasoning. In: Uncertainty in Artificial Intelligence, Vol. 4, ed. by R.D. Shachter (North Holland, Amsterdam 1990) pp. 149–158
R. Jeffrey: The Logic of Decision, 2nd edn. (Chicago Univ. Press, Chicago 1983)
D. Dubois, H. Prade: A synthetic view of belief revision with uncertain inputs in the framework of possibility theory, Int. J. Approx. Reason. 17(2–3), 295–324 (1997)
S. Benferhat, D. Dubois, H. Prade, M.-A. Williams: A framework for iterated belief revision using possibilistic counterparts to Jeffrey's rule, Fundam. Inform. 99(2), 147–168 (2010)
S. Benferhat, D. Dubois, L. Garcia, H. Prade: On the transformation between possibilistic logic bases and possibilistic causal networks, Int. J. Approx. Reason. 29, 135–173 (2002)
N. Ben Amor, S. Benferhat: Graphoid properties of qualitative possibilistic independence relations, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 13, 59–97 (2005)
N. Ben Amor, S. Benferhat, K. Mellouli: Anytime propagation algorithm for min-based possibilistic graphs, Soft Comput. 8, 50–161 (2003)
C. Borgelt, J. Gebhardt, R. Kruse: Possibilistic graphical models. In: Computational Intelligence in Data Mining, ed. by G.D. Riccia (Springer, Wien 2000) pp. 51–68
W. Guezguez, N. Ben Amor, K. Mellouli: Qualitative possibilistic influence diagrams based on qualitative possibilistic utilities, Eur. J. Oper. Res. 195, 223–238 (2009)
H. Fargier, N. Ben Amor, W. Guezguez: On the complexity of decision making in possibilistic decision trees, Proc. UAI (2011) pp. 203–210
R. Ayachi, N. Ben Amor, S. Benferhat: Experimental comparative study of compilation-based inference in Bayesian and possibilitic networks, Lect. Notes Comput. Sci. 6857, 155–163 (2011)
S. Benferhat: Interventions and belief change in possibilistic graphical models, Artif. Intell. 174(2), 177–189 (2010)
S. Benferhat, S. Smaoui: Inferring interventions in product-based possibilistic causal networks, Fuzzy Set. Syst. 169(1), 26–50 (2011)
D. Dubois, H. Prade: What are fuzzy rules and how to use them, Fuzzy Set. Syst. 84, 169–185 (1996)
D. Dubois, H. Prade, L. Ughetto: A new perspective on reasoning with fuzzy rules, Int. J. Intell. Syst. 18, 541–567 (2003)
S. Galichet, D. Dubois, H. Prade: Imprecise specification of ill-known functions using gradual rules, Int. J. Approx. Reason. 35, 205–222 (2004)
D. Dubois, E. Huellermeier, H. Prade: A systematic approach to the assessment of fuzzy association rules, Data Min. Knowl. Discov. 13, 167–192 (2006)
D. Dubois, F. Esteva, P. Garcia, L. Godo, R. de Lopez Mantaras, H. Prade: Fuzzy set modelling in cased-based reasoning, Int. J. Intell. Syst. 13(4), 345–373 (1998)
D. Dubois, E. Huellermeier, H. Prade: Fuzzy set-based methods in instance-based reasoning, IEEE Trans. Fuzzy Syst. 10, 322–332 (2002)
D. Dubois, E. Huellermeier, H. Prade: Fuzzy methods for case-based recommendation and decision support, J. Intell. Inf. Syst. 27, 95–115 (2006)
E. Huellermeier, D. Dubois, H. Prade: Model adaptation in possibilistic instance-based reasoning, IEEE Trans. Fuzzy Syst. 10, 333–339 (2002)
E. Huellermeier: Case-Based Approximate Reasoning (Springer, Berlin 2007)
D. Dubois, P. Fortemps: Computing improved optimal solutions to max–min flexible constraint satisfaction problems, Eur. J. Oper. Res. 118, 95–126 (1999)
M. Inuiguchi, H. Ichihashi, Y. Kume: Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory, Inf. Sci. 67, 93–126 (1993)
D. Dubois, H. Fargier, H. Prade: Refinements of the maximin approach to decision-making in fuzzy environment, Fuzzy Set. Syst. 81, 103–122 (1996)
D. Dubois, P. Fortemps: Selecting preferred solutions in the minimax approach to dynamic programming problems under flexible constraints, Eur. J. Oper. Res. 160, 582–598 (2005)
S. Kaci, H. Prade: Mastering the processing of preferences by using symbolic priorities in possibilistic logic, Proc. 18th Eur. Conf. Artif. Intell. (ECAI'08), Patras (2008) pp. 376–380
S. Benferhat, D. Dubois, S. Kaci, H. Prade: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions, Inf. Fusion 7, 135–150 (2006)
D. Dubois, H. Fargier, J.-F. Bonnefon: On the qualitative comparison of decisions having positive and negative features, J. Artif. Intell. Res. 32, 385–417 (2008)
J.-F. Bonnefon, D. Dubois, H. Fargier, S. Leblois: Qualitative heuristics for balancing the pros and the cons, Theor. Decis. 65, 71–95 (2008)
A. Tversky, D. Kahneman: Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain. 5, 297–323 (1992)
S. Kaci: Working with Preferences: Less Is More (Springer, Berlin 2011)
L.J. Savage: The Foundations of Statistics (Dover, New York 1972)
D. Dubois, L. Godo, H. Prade, A. Zapico: On the possibilistic decision model: From decision under uncertainty to case-based decision, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7, 631–670 (1999)
D. Dubois, H. Prade, P. Smets: New semantics for quantitative possibility theory, Lect. Notes Artif. Intell. 2143, 410–421 (2001)
R.R. Yager: Possibilistic decision making, IEEE Trans. Syst. Man Cybern. 9, 388–392 (1979)
T. Whalen: Decision making under uncertainty with various assumptions about available information, IEEE Trans. Syst. Man Cybern. 14, 888–900 (1984)
D. Dubois, D. Le Berre, H. Prade, R. Sabbadin: Using possibilistic logic for modeling qualitative decision: ATMS-based algorithms, Fundam. Inform. 37, 1–30 (1999)
H. Fargier, R. Sabbadin: Qualitative decision under uncertainty: Back to expected utility, Artif. Intell. 164, 245–280 (2005)
M. Grabisch, T. Murofushi, M. Sugeno (Eds.): Fuzzy Measures and Integrals – Theory and Applications (Physica, Heidelberg 2000) pp. 314–322
D. Dubois, H. Prade, R. Sabbadin: Qualitative decision theory with Sugeno integrals. In: Fuzzy Measures and Integrals – Theory and Applications, (Physica, Heidelberg 2000) pp. 314–322
D. Dubois, H. Prade, R. Sabbadin: Decision-theoretic foundations of possibility theory, Eur. J. Oper. Res. 128, 459–478 (2001)
D. Dubois, H. Fargier, P. Perny, H. Prade: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach, Artif. Intell. 148, 219–260 (2003)
D. Dubois, H. Fargier, H. Prade, R. Sabbadin: A survey of qualitative decision rules under uncertainty. In: Decision-making Process-Concepts and Methods, ed. by D. Bouyssou, D. Dubois, M. Pirlot, H. Prade (Wiley, London 2009) pp. 435–473
D. Dubois, H. Fargier: Making discrete sugeno integrals more discriminant, Int. J. Approx. Reason. 50(6), 880–898 (2009)
R. Sabbadin, H. Fargier, J. Lang: Towards qualitative approaches to multi-stage decision making, Int. J. Approx. Reason. 19(3–4), 441–471 (1998)
D. Dubois, H. Prade: When upper probabilities are possibility measures, Fuzzy Set. Syst. 49, 65–74 (1992)
D. Dubois, S. Moral, H. Prade: A semantics for possibility theory based on likelihoods, J. Math. Anal. Appl. 205, 359–380 (1997)
G. Shafer: Belief functions and possibility measures. In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic, ed. by J.C. Bezdek (CRC, Boca Raton 1987) pp. 51–84
S. Benferhat, D. Dubois, H. Prade: Possibilistic and standard probabilistic semantics of conditional knowledge bases, J. Log. Comput. 9, 873–895 (1999)
V. Maslov: Méthodes Opératorielles (Mir Publications, Moscow 1987)
A. Puhalskii: Large Deviations and Idempotent Probability (Chapman Hall, London 2001)
H.T. Nguyen, B. Bouchon-Meunier: Random sets and large deviations principle as a foundation for possibility measures, Soft Comput. 8, 61–70 (2003)
G. De Cooman, D. Aeyels: Supremum-preserving upper probabilities, Inf. Sci. 118, 173–212 (1999)
P. Walley, G. De Cooman: A behavioural model for linguistic uncertainty, Inf. Sci. 134, 1–37 (1999)
J. Gebhardt, R. Kruse: The context model, Int. J. Approx. Reason. 9, 283–314 (1993)
C. Joslyn: Measurement of possibilistic histograms from interval data, Int. J. Gen. Syst. 26, 9–33 (1997)
Y. Ben-Haim: Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edn. (Academic Press, London 2006)
A. Neumaier: Clouds, fuzzy sets and probability intervals, Reliab. Comput. 10, 249–272 (2004)
S. Destercke, D. Dubois, E. Chojnacki: Unifying practical uncertainty representations Part I: Generalized p-boxes, Int. J. Approx. Reason. 49, 649–663 (2008); Part II: Clouds, Int. J. Approx. Reason. 49, 664–677 (2008)
D. Dubois, H. Prade: Bayesian conditioning in possibility theory, Fuzzy Set. Syst. 92, 223–240 (1997)
G. De Cooman: Integration and conditioning in numerical possibility theory, Ann. Math. Artif. Intell. 32, 87–123 (2001)
P. Walley: Statistical Reasoning with Imprecise Probabilities (Chapman Hall, London 1991)
G.J. Klir: A principle of uncertainty and information invariance, Int. J. Gen. Syst. 17, 249–275 (1990)
J.F. Geer, G.J. Klir: A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty, Int. J. Gen. Syst. 20, 143–176 (1992)
D. Dubois, H. Prade, S. Sandri: On possibility/probability transformations. In: Fuzzy Logic: State of the Art, ed. by R. Lowen, M. Roubens (Kluwer, Dordrecht 1993) pp. 103–112
G.J. Klir, B.B. Parviz: Probability-possibility transformations: A comparison, Int. J. Gen. Syst. 21, 291–310 (1992)
D. Dubois, H. Prade: On several representations of an uncertain body of evidence. In: Fuzzy Information and Decision Processes, ed. by M. Gupta, E. Sanchez (North-Holland, Amsterdam 1982) pp. 167–181
P. Smets: Constructing the pignistic probability function in a context of uncertainty. In: Uncertainty in Artificial Intelligence, Vol. 5, ed. by M. Henrion (North-Holland, Amsterdam 1990) pp. 29–39
A.W. Marshall, I. Olkin: Inequalities: Theory of Majorization and Its Applications (Academic, New York 1979)
Z.W. Birnbaum: On random variables with comparable peakedness, Ann. Math. Stat. 19, 76–81 (1948)
D. Dubois, E. Huellermeier: Comparing probability measures using possibility theory: A notion of relative peakedness, Inter. J. Approx. Reason. 45, 364–385 (2007)
D. Dubois, L. Foulloy, G. Mauris, H. Prade: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities, Reliab. Comput. 10, 273–297 (2004)
G. Mauris, V. Lasserre, L. Foulloy: Fuzzy modeling of measurement data acquired from physical sensors, IEEE Trans. Meas. Instrum. 49, 1201–1205 (2000)
C. Baudrit, D. Dubois: Practical representations of incomplete probabilistic knowledge, Comput. Stat. Data Anal. 51, 86–108 (2006)
G. Mauris: Possibility distributions: A unified representation of usual direct-probability-based parameter estimation methods, Int. J. Approx. Reason. 52, 1232–1242 (2011)
D. Dubois, H. Prade, P. Smets: A definition of subjective possibility, Int. J. Approx. Reason. 48, 352–364 (2008)
D. Dubois, H. Prade: Unfair coins and necessity measures: A possibilistic interpretation of histograms, Fuzzy Set. Syst. 10(1), 15–20 (1983)
D. Dubois, H. Prade: Evidence measures based on fuzzy information, Automatica 21, 547–562 (1985)
W. Van Leekwijck, E.E. Kerre: Defuzzification: Criteria and classification, Fuzzy Set. Syst. 108, 303–314 (2001)
D. Dubois, H. Prade: The mean value of a fuzzy number, Fuzzy Set. Syst. 24, 279–300 (1987)
R.R. Yager: A procedure for ordering fuzzy subsets of the unit interval, Inf. Sci. 24, 143–161 (1981)
S. Chanas, M. Nowakowski: Single value simulation of fuzzy variable, Fuzzy Set. Syst. 25, 43–57 (1988)
P. Bosc, H. Prade: An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain of imprecise databases. In: Uncertainty Management in Information Systems, ed. by P. Smets, A. Motro (Kluwer, Dordrecht 1997) pp. 285–324
M. Cayrol, H. Farreny, H. Prade: Fuzzy pattern-matching, Kybernetes 11(2), 103–116 (1982)
D. Dubois, H. Prade, C. Testemale: Weighted fuzzy pattern matching, Fuzzy Set. Syst. 28, 313–331 (1988)
Y. Loiseau, H. Prade, M. Boughanem: Qualitative pattern matching with linguistic terms, AI Commun. 17(1), 25–34 (2004)
P. Bosc, O. Pivert: Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 18(5), 565–603 (2010)
P. Bosc, O. Pivert: About projection-selection-join queries addressed to possibilistic relational databases, IEEE Trans. Fuzzy Syst. 13, 124–139 (2005)
P. Bosc, O. Pivert, H. Prade: A model based on possibilistic certainty levels for incomplete databases, Proc. 3rd Int. Conf. Scalable Uncertainty Management (SUM 2009) (Springer, Washington 2009) pp. 80–94
P. Bosc, O. Pivert, H. Prade: An uncertain database model and a query algebra based on possibilistic certainty, Proc. 2nd Int. Conf. Soft Comput. and Pattern Recognition (SoCPaR10), ed. by T.P. Martin (IEEE, Paris 2010) pp. 63–68
A. HadjAli, S. Kaci, H. Prade: Database preference queries – A possibilistic logic approach with symbolic priorities, Ann. Math. Artif. Intell. 63, 357–383 (2011)
P. Bosc, O. Pivert, H. Prade: A possibilistic logic view of preference queries to an uncertain database, Proc. 19th IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE10), Barcelona (2010)
D. Dubois, H. Prade: Handling bipolar queries in fuzzy information processing. In: Fuzzy Information Processing in Databases, Vol. 1, ed. by J. Galindo (Information Science Reference, Hershey 2008) pp. 97–114
S. Zadrozny, J. Kacprzyk: Bipolar queries – An aggregation operator focused perspective, Fuzzy Set. Syst. 196, 69–81 (2012)
P. Bosc, O. Pivert: On a fuzzy bipolar relational algebra, Inf. Sci. 219, 1–16 (2013)
D. Dubois, J. Mengin, H. Prade: Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion. In: Fuzzy Logic and the Semantic Web, ed. by E. Sanchez (Elsevier, Amsterdam 2005)
G. Qi, Q. Ji, J.Z. Pan, J. Du: Extending description logics with uncertainty reasoning in possibilistic logic, Int. J. Intell. Syst. 26(4), 353–381 (2011)
D. Dubois, H. Prade: Possibility theory and data fusion in poorly informed environments, Control Eng. Pract. 2(5), 811–823 (1994)
D. Dubois, H. Prade, R.R. Yager: Merging fuzzy information. In: Fuzzy Sets in Approximate Reasoning and Information Systems, The Handbooks of Fuzzy Sets Series, ed. by J. Bezdek, D. Dubois, H. Prade (Kluwer, Boston 1999) pp. 335–401
M. Oussalah, H. Maaref, C. Barret: From adaptive to progressive combination of possibility distributions, Fuzzy Set. Syst. 139(3), 559–582 (2003)
M. Oussalah: Study of some algebraic properties of adaptive combination rules, Fuzzy Set. Syst. 114(3), 391–409 (2000)
S. Destercke, D. Dubois, E. Chojnacki: Possibilistic information fusion using maximum coherent subsets, IEEE Trans. Fuzzy Syst. 17, 79–92 (2009)
S. Benferhat, D. Dubois, H. Prade: From semantic to syntactic approaches to information combination in possibilistic logic. In: Aggregation and Fusion of Imperfect Information, ed. by B. Bouchon-Meunier (Physica-Verlag, Heidelberg 1998) pp. 141–161
S. Benferhat: Merging possibilistic networks, Proc. 17th Eur. Conf. Artif. Intell. (Riva del Garda, Italy 2006)
S. Benferhat, D. Dubois, S. Kaci, H. Prade: Possibilistic merging and distance-based fusion of propositional information, Ann. Math. Artif. Intell. 34(1–3), 217–252 (2002)
G. Qi, W. Liu, D.H. Glass, D.A. Bell: A split-combination approach to merging knowledge bases in possibilistic logic, Ann. Math. Artif. Intell. 48(1/2), 45–84 (2006)
G. Qi, W. Liu, D.A. Bell: Measuring conflict and agreement between two prioritized knowledge bases in possibilistic logic, Fuzzy Set. Syst. 161(14), 1906–1925 (2010)
S. Konieczny, J. Lang, P. Marquis: Distance based merging: A general framework and some complexity results, Proc. Int. Conf. Principles of Knowledge Representation and Reasoning (2002) pp. 97–108
S. Benferhat, D. Dubois, H. Prade, M.-A. Williams: A practical approach to revising prioritized knowledge bases, Stud. Log. 70, 105–130 (2002)
S. Barro, R. Marín, J. Mira, A.R. Patón: A model and a language for the fuzzy representation and handling of time, Fuzzy Set. Syst. 61, 153175 (1994)
D. Dubois, H. Prade: Processing fuzzy temporal knowledge, IEEE Trans. Syst. Man Cybern. 19(4), 729–744 (1989)
D. Dubois, A. Hadj Ali, H. Prade: Fuzziness and uncertainty in temporal reasoning, J. Univer. Comput. Sci. 9(9), 1168–1194 (2003)
M.A. Cárdenas Viedma, R. Marín, I. Navarrete: Fuzzy temporal constraint logic: A valid resolution principle, Fuzzy Set. Syst. 117(2), 231–250 (2001)
D. Dubois, A. Hadj Ali, H. Prade: A possibility theory-based approach to the handling of uncertain relations between temporal points, Int. J. Intell. Syst. 22, 157–179 (2007)
D. Dubois, J. Lang, H. Prade: Timed possibilistic logic, Fundam. Inform. 15, 211–234 (1991)
D. Dubois, H. Fargier, H. Prade: Fuzzy constraints in job-shop scheduling, J. Intell. Manuf. 6, 215–234 (1995)
R. Slowinski, M. Hapke (Eds.): Scheduling under Fuzziness (Physica, Heidelberg 2000)
D. Dubois, H. Fargier, P. Fortemps: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge, Eur. J. Oper. Res. 147, 231–252 (2003)
S. Chanas, P. Zielinski: Critical path analysis in the network with fuzzy activity times, Fuzzy Set. Syst. 122, 195–204 (2001)
S. Chanas, D. Dubois, P. Zielinski: Necessary criticality in the network with imprecise activity times, IEEE Trans. Man Mach. Cybern. 32, 393–407 (2002)
J. Fortin, P. Zielinski, D. Dubois, H. Fargier: Criticality analysis of activity networks under interval uncertainty, J. Sched. 13, 609–627 (2010)
D. Dubois, J. Fortin, P. Zielinski: Interval PERT and its fuzzy extension. In: Production Engineering and Management Under Fuzziness, ed. by C. Kahraman, M. Yavuz (Springer, Berlin 2010) pp. 171–199
S. Chanas, A. Kasperski: Possible and necessary optimality of solutions in the single machine scheduling problem with fuzzy parameters, Fuzzy Set. Syst. 142, 359–371 (2004)
A. Kasperski: A possibilistic approach to sequencing problems with fuzzy parameters, Fuzzy Set. Syst. 150, 77–86 (2005)
J. Fortin, A. Kasperski, P. Zielinski: Some methods for evaluating the optimality of elements in matroids with ill-known weights, Fuzzy Set. Syst. 16, 1341–1354 (2009)
A. Kasperski, P. Zielenski: Possibilistic bottleneck combinatorial optimization problems with ill-known weights, Int. J. Approx. Reason. 52, 1298–1311 (2011)
J. C. Helton, W. L. Oberkampf (Eds.): Alternative representations of uncertainty, Reliab. Eng. Syst. Saf. 85(1--3), (2004)
D. Guyonnet, B. Bourgine, D. Dubois, H. Fargier, B. Côme, J.-P. Chilès: Hybrid approach for addressing uncertainty in risk assessments, J. Environ. Eng. 129, 68–78 (2003)
D. Dubois, H. Prade: Random sets and fuzzy interval analysis, Fuzzy Set. Syst. 42, 87–101 (1991)
C. Baudrit, D. Guyonnet, D. Dubois: Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment, IEEE Trans. Fuzzy Syst. 14, 593–608 (2006)
C. Baudrit, I. Couso, D. Dubois: Joint propagation of probability and possibility in risk analysis: Towards a formal framework, Inter. J. Approx. Reason. 45, 82–105 (2007)
C. Baudrit, D. Dubois, N. Perrot: Representing parametric probabilistic models tainted with imprecision, Fuzzy Set. Syst. 159, 1913–1928 (2008)
M. Gil (Ed.): Fuzzy random variables, Inf. Sci. 133, (2001) Special Issue
R. Sabbadin: Towards possibilistic reinforcement learning algorithms, FUZZ-IEEE 2001, 404–407 (2001)
S. Benferhat, D. Dubois, S. Lagrue, H. Prade: A big-stepped probability approach for discovering default rules, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(Supplement), 1–14 (2003)
H. Prade, M. Serrurier: Bipolar version space learning, Int. J. Intell. Syst. 23, 1135–1152 (2008)
H. Prade, M. Serrurier: Introducing possibilistic logic in ILP for dealing with exceptions, Artif. Intell. 171, 939–950 (2007)
O. Wolkenhauer: Possibility Theory with Applications to Data Analysis (Research Studies Press, Chichester 1998)
H. Tanaka, P.J. Guo: Possibilistic Data Analysis for Operations Research (Physica, Heidelberg 1999)
D. Cayrac, D. Dubois, H. Prade: Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application, IEEE Trans. Fuzzy Syst. 4, 251–269 (1996)
S. Boverie: Online diagnosis of engine dyno test benches: A possibilistic approach, Proc. 15th. Eur. Conf. Artif. Intell. (IOS, Lyon, Amsterdam 2002) pp. 658–662
L. Amgoud, H. Prade: Reaching agreement through argumentation: A possibilistic approach, Proc. 9th Int. Conf. Principles of Knowledge Representation and Reasoning (KR'04), Whistler, BC, Canada (AAAI, Palo Alto 2004) pp. 175–182
L. Amgoud, H. Prade: Using arguments for making and explaining decisions, Artif. Intell. 173(3–4), 413–436 (2009)
D. Dubois, F. de Dupin Saint-Cyr, H. Prade: A possibility-theoretic view of formal concept analysis, Fundam. Inform. 75, 195–213 (2007)
Y. Djouadi, H. Prade: Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices, Fuzzy Optim. Decis. Mak. 10, 287–309 (2011)
D. Dubois, H. Prade: Generalized possibilistic logic, Lect. Notes Comput. Sci. 6929, 428–432 (2011)
D. Dubois, H. Prade, S. Schockaert: Rules and meta-rules in the framework of possibility theory and possibilistic logic, Sci. Iran. 18(3), 566–573 (2011)
D. Dubois, H. Prade: Toward multiple-agent extensions of possibilistic logic, Proc. IEEE Int. Conf. on Fuzzy Syst. (FUZZ-IEEE'07), London (2007) pp. 187–192
D. Dubois, H. Prade, A. Rico: A possibilistic logic view of Sugeno integrals. In: Proc. Eurofuse Workshop on Fuzzy Methods for Knowledge-Based Systems (EUROFUSE 2011), Advances in Intelligent and Soft Computing, Vol. 107, ed. by P. Melo-Pinto, P. Couto, C. Serôdio, J. Fodor, B. De Baets (Springer, Berlin 2011) pp. 19–30
G. Banon: Constructive decomposition of fuzzy measures in terms of possibility and necessity measures, Proc. VIth IFSA World Congress, Vol. I (São Paulo, Brazil 1995) pp. 217–220
D. Dubois: Fuzzy measures on finite scales as families of possibility measures, Proc. 7th Conf. Eur. Soc. Fuzzy Logic Technol. (EUSFLAT'11) (Atlantis, Annecy 2011) pp. 822–829
H. Prade, A. Rico: Possibilistic evidence, Lect. Notes Artif. Intell. 6717, 713–724 (2011)
D. Dubois, H. Prade, A. Rico: Qualitative capacities as imprecise possibilities, Lect. Notes Comput. Sci. 7958, 169–180 (2011)
P. Diamond: Fuzzy least squares, Inf. Sci. 46, 141–157 (1988)
K. Loquin, D. Dubois: Kriging and epistemic uncertainty: A critical discussion. In: Methods for Handling Imperfect Spatial Information, Vol. 256, ed. by R. Jeansoulin, O. Papini, H. Prade, S. Schockaert (Springer, Berlin 2010) pp. 269–305
D. Dubois, H. Prade: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets, Fuzzy Set. Syst. 192, 3–24 (2012)
K. Loquin, D. Dubois: A fuzzy interval analysis approach to kriging with ill-known variogram and data, Soft Comput. 16(5), 769–784 (2012)
H. Prade, M. Serrurier: Maximum-likelihood principle for possibility distributions viewed as families of probabilities, Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'11), Taipei (2011) pp. 2987–2993
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dubois, D., Prade, H. (2015). Possibility Theory and Its Applications: Where Do We Stand?. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)