Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Possibility Theory and Its Applications: Where Do We Stand?

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

  • 12k Accesses

Abstract

This chapter provides an overview of possibility theory, emphasizing its historical roots and its recent developments. Possibility theory lies at the crossroads between fuzzy sets, probability, and nonmonotonic reasoning. Possibility theory can be cast either in an ordinal or in a numerical setting. Qualitative possibility theory is closely related to belief revision theory, and commonsense reasoning with exception-tainted knowledge in artificial intelligence. Possibilistic logic provides a rich representation setting, which enables the handling of lower bounds of possibility theory measures, while remaining close to classical logic. Qualitative possibility theory has been axiomatically justified in a decision-theoretic framework in the style of Savage, thus providing a foundation for qualitative decision theory. Quantitative possibility theory is the simplest framework for statistical reasoning with imprecise probabilities. As such, it has close connections with random set theory and confidence intervals, and can provide a tool for uncertainty propagation with limited statistical or subjective information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASP:

answer-set programming

CBR:

case-based reasoning

CP  net:

conditional preference network

FCA:

formal concept analysis

MEL:

minimal epistemic logic

PERT:

program evaluation and review technique

References

  1. L.A. Zadeh: Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. B.R. Gaines, L. Kohout: Possible automata, Proc. Int. Symp. Multiple-Valued Logics (Bloomington, Indiana 1975) pp. 183–196

    Google Scholar 

  3. D. Dubois, H. Prade: Possibility Theory (Plenum, New York 1988)

    Book  MATH  Google Scholar 

  4. D. Dubois, H.T. Nguyen, H. Prade: Fuzzy sets and probability: Misunderstandings, bridges and gaps. In: Fundamentals of Fuzzy Sets, ed. by D. Dubois, H. Prade (Kluwer, Boston 2000) pp. 343–438, see also the bibliography in http://www.scholarpedia.org/article/Possibility_theory)

    Chapter  Google Scholar 

  5. D. Dubois, H. Prade: Possibility theory: Qualitative and quantitative aspects. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 1, ed. by D.M. Gabbay, P. Smets (Kluwer, Dordrecht 1998) pp. 169–226

    Google Scholar 

  6. D. Dubois, H. Fargier, H. Prade: Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty, Appl. Intell. 6, 287–309 (1996)

    Article  MATH  Google Scholar 

  7. S. Benferhat, D. Dubois, S. Kaci, H. Prade: Modeling positive and negative information in possibility theory, Int. J. Intell. Syst. 23, 1094–1118 (2008)

    Article  MATH  Google Scholar 

  8. D. Dubois, H. Prade: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory, Fuzzy Set. Syst. 160, 1355–1366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Spohn: Ordinal conditional functions: A dynamic theory of epistemic states. In: Causation in Decision, Belief Change, and Statistics, Vol. 2, ed. by W.L. Harper, B. Skyrms (Kluwer, Dordrecht 1988) pp. 105–134

    Chapter  Google Scholar 

  10. W. Spohn: The Laws of Belief: Ranking Theory and its Philosophical Applications (Oxford Univ. Press, Oxford 2012)

    Book  Google Scholar 

  11. I.M. Bocheński: La Logique de Théophraste (Librairie de l'Université de Fribourg en Suisse, Fribourg 1947)

    MATH  Google Scholar 

  12. B.F. Chellas: Modal Logic, an Introduction (Cambridge Univ. Press, Cambridge 1980)

    Book  MATH  Google Scholar 

  13. G.L.S. Shackle: Decision, Order and Time in Human Affairs, 2nd edn. (Cambridge Univ. Press, Cambridge 1961)

    Google Scholar 

  14. D.L. Lewis: Counterfactuals (Basil Blackwell, Oxford 1973)

    MATH  Google Scholar 

  15. D. Dubois: Belief structures, possibility theory and decomposable measures on finite sets, Comput. Artif. Intell. 5, 403–416 (1986)

    MATH  Google Scholar 

  16. T. Sudkamp: Similarity and the measurement of possibility, Actes Rencontres Francophones sur la Logique Floue et ses Applications (Cepadues Editions, Toulouse 2002) pp. 13–26

    Google Scholar 

  17. L.J. Cohen: The Probable and the Provable (Clarendon, Oxford 1977)

    Book  Google Scholar 

  18. L.A. Zadeh: Fuzzy sets and information granularity. In: Advances in Fuzzy Set Theory and Applications, ed. by M.M. Gupta, R. Ragade, R.R. Yager (Amsterdam, North-Holland 1979) pp. 3–18

    Google Scholar 

  19. L.A. Zadeh: Possibility theory and soft data analysis. In: Mathematical Frontiers of Social and Policy Sciences, ed. by L. Cobb, R. Thrall (Westview, Boulder 1982) pp. 69–129

    Google Scholar 

  20. D. Dubois, H. Prade: Fuzzy Sets and Systems: Theory and Applications (Academic Press, New York 1980)

    MATH  Google Scholar 

  21. G.J. Klir, T. Folger: Fuzzy Sets, Uncertainty and Information (Prentice Hall, Englewood Cliffs 1988)

    MATH  Google Scholar 

  22. D. Dubois, H. Prade: Possibility theory and formal concept analysis: Characterizing independent sub-contexts, Fuzzy Set. Syst. 196, 4–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.R. Yager: An introduction to applications of possibility theory, Hum. Syst. Manag. 3, 246–269 (1983)

    Google Scholar 

  24. R.R. Yager: A foundation for a theory of possibility, Cybern. Syst. 10(1–3), 177–204 (1980)

    MathSciNet  MATH  Google Scholar 

  25. E.P. Klement, R. Mesiar, E. Pap: Triangular Norms (Kluwer, Dordrecht 2000)

    Book  MATH  Google Scholar 

  26. G. Coletti, B. Vantaggi: Comparative models ruled by possibility and necessity: A conditional world, Int. J. Approx. Reason. 45(2), 341–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Coletti, B. Vantaggi: T-conditional possibilities: Coherence and inference, Fuzzy Set. Syst. 160(3), 306–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. De Baets, E. Tsiporkova, R. Mesiar: Conditioning in possibility with strict order norms, Fuzzy Set. Syst. 106, 221–229 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. De Cooman: Possibility theory. Part I: Measure- and integral-theoretic groundwork; Part II: Conditional possibility; Part III: Possibilistic independence, Int. J. Gen. Syst. 25, 291–371 (1997)

    Article  MATH  Google Scholar 

  30. L.M. De Campos, J.F. Huete: Independence concepts in possibility theory, Fuzzy Set. Syst. 103, 487–506 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Dubois, L. del Farinas Cerro, A. Herzig, H. Prade: Qualitative relevance and independence: A roadmap, Proc. 15th Int. Jt. Conf. Artif. Intell. Nagoya (1997) pp. 62–67

    Google Scholar 

  32. N. Ben Amor, K. Mellouli, S. Benferhat, D. Dubois, H. Prade: A theoretical framework for possibilistic independence in a weakly ordered setting, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 117–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Dubois, E. Kerre, R. Mesiar, H. Prade: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, ed. by D. Dubois, H. Prade (Kluwer, Boston 2000) pp. 483–581

    Chapter  Google Scholar 

  34. D. Dubois, H. Prade: Possibility theory as a basis for preference propagation in automated reasoning, Proc. 1st IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE'92), San Diego (1992) pp. 821–832

    Google Scholar 

  35. D. Dubois, P. Hájek, H. Prade: Knowledge-driven versus data-driven logics, J. Log. Lang. Inform. 9, 65–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Dubois, H. Prade: Possibility theory, probability theory and multiple-valued logics: A clarification, Ann. Math. Artif. Intell. 32, 35–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Banerjee, D. Dubois: A simple modal logic for reasoning about revealed beliefs, Lect. Notes Artif. Intell. 5590, 805–816 (2009)

    MathSciNet  MATH  Google Scholar 

  38. M. Banerjee, D. Dubois: A simple logic for reasoning about incomplete knowledge, Int. J. Approx. Reason. 55, 639–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Dubois, H. Prade: Epistemic entrenchment and possibilistic logic, Artif. Intell. 50, 223–239 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Gärdenfors: Knowledge in Flux (MIT Press, Cambridge 1988)

    MATH  Google Scholar 

  41. D. Dubois, H. Prade: Belief change and possibility theory. In: Belief Revision, ed. by P. Gärdenfors (Cambridge Univ. Press, Cambridge 1992) pp. 142–182

    Chapter  Google Scholar 

  42. D. Lehmann, M. Magidor: What does a conditional knowledge base entail?, Artif. Intell. 55, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Dubois, H. Fargier, H. Prade: Ordinal and probabilistic representations of acceptance, J. Artif. Intell. Res. 22, 23–56 (2004)

    MathSciNet  MATH  Google Scholar 

  44. S. Benferhat, D. Dubois, H. Prade: Nonmonotonic reasoning, conditional objects and possibility theory, Artif. Intell. 92, 259–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Pearl: System Z: A natural ordering of defaults with tractable applications to default reasoning, Proc. 3rd Conf. Theor. Aspects Reason. About Knowl. (Morgan Kaufmann, San Francisco 1990) pp. 121–135

    Google Scholar 

  46. E. Raufaste, R. Da Silva Neves, C. Mariné: Testing the descriptive validity of possibility theory in human judgements of uncertainty, Artif. Intell. 148, 197–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Farreny, H. Prade: Default and inexact reasoning with possibility degrees, IEEE Trans. Syst. Man Cybern. 16(2), 270–276 (1986)

    Article  MATH  Google Scholar 

  48. D. Dubois, J. Lang, H. Prade: Possibilistic logic. In: Handbook of Logic in AI and Logic Programming, Vol. 3, ed. by D.M. Gabbay (Oxford Univ. Press, Oxford 1994) pp. 439–513

    Google Scholar 

  49. D. Dubois, H. Prade: Possibilistic logic: A retrospective and prospective view, Fuzzy Set. Syst. 144, 3–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Lang: Possibilistic logic: Complexity and algorithms. In: Algorithms for Uncertainty and Defeasible Reasoning, (Kluwer, Dordrecht 2001) pp. 179–220

    Google Scholar 

  51. S. Benferhat, D. Dubois, H. Prade: Practical handling of exception-tainted rules and independence information in possibilistic logic, Appl. Intell. 9, 101–127 (1998)

    Article  Google Scholar 

  52. S. Benferhat, S. Yahi, H. Drias: A new default theories compilation for MSP-entailment, J. Autom. Reason. 45(1), 39–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Benferhat, S. Lagrue, O. Papini: Reasoning with partially ordered information in a possibilistic logic framework, Fuzzy Set. Syst. 144, 25–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Benferhat, H. Prade: Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic, Proc. 9th Int. Jt. Conf. Artif. Intell. (IJCAI'05) (2005) pp. 1281–1286

    Google Scholar 

  55. S. Benferhat, H. Prade: Compiling possibilistic knowledge bases, Proc. 17th Eur. Conf. Artif. Intell. (Riva del Garda, Italy 2006)

    Google Scholar 

  56. D. Dubois, S. Konieczny, H. Prade: Quasi-possibilistic logic and its measures of information and conflict, Fundam. Inform. 57, 101–125 (2003)

    MathSciNet  MATH  Google Scholar 

  57. D. Dubois, F. Esteva, L. Godo, H. Prade: Fuzzy-set based logics – An history-oriented presentation of their main developments. In: Handbook of the History of Logic, the Many-Valued and Nonmonotonic Turn in Logic, Vol. 8, ed. by D.M. Gabbay, J. Woods (Elsevier, Amsterdam 2007) pp. 325–449

    Chapter  Google Scholar 

  58. L. Boldrin, C. Sossai: Local possibilistic logic, J. Appl. Non-Class. Log. 7, 309–333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Dellunde, L. Godo, E. Marchioni: Extending possibilistic logic over Gödel logic, Int. J. Approx. Reason. 52, 63–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. P. Hájek, D. Harmancová, R. Verbrugge: A qualitative fuzzy possibilistic logic, Int. J. Approx. Reason. 12(1), 1–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Lehmke: Logics which Allow Degrees of Truth and Degrees of Validity, Ph.D. Thesis (Universität Dortmund, Germany 2001)

    MATH  Google Scholar 

  62. L.A. Zadeh: Fuzzy logic and approximate reasoning (In memory of Grigore Moisil), Synthese 30, 407–428 (1975)

    Article  MATH  Google Scholar 

  63. D. Dubois, H. Prade, S. Sandri: A. Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers. In: Logic Programming and Soft Computing, ed. by T.P. Martin, F. Arcelli-Fontana (Research Studies Press Ltd., Baldock, England 1998) pp. 69–90

    Google Scholar 

  64. T. Alsinet, L. Godo: Towards an automated deduction system for first-order possibilistic logic programming with fuzzy constants, Int. J. Intell. Syst. 17, 887–924 (2002)

    Article  MATH  Google Scholar 

  65. T. Alsinet: Logic Programming with Fuzzy Unification and Imprecise Constants: Possibilistic Semantics and Automated Deduction, Ph.D. Thesis (Technical University of Catalunya, Barcelona 2001)

    Google Scholar 

  66. T. Alsinet, L. Godo, S. Sandri: Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: A comparative description, Electr. Notes Theor. Comput. Sci. 66(5), 1–21 (2002)

    Article  MATH  Google Scholar 

  67. T. Alsinet, L. Godo: Adding similarity-based reasoning capabilities to a Horn fragment of possibilistic logic with fuzzy constants, Fuzzy Set. Syst. 144, 43–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. T. Alsinet, C. Chesñevar, L. Godo, S. Sandri, G. Simari: Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification, Int. J. Approx. Reason. 48, 711–729 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Alsinet, C. Chesñevar, L. Godo, G. Simari: A logic programming framework for possibilistic argumentation: Formalization and logical properties, Fuzzy Set. Syst. 159(10), 1208–1228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Nicolas, L. Garcia, I. Stéphan, C. Lefèvre: Possibilistic uncertainty handling for answer set programming, Ann. Math. Artif. Intell. 47(1/2), 139–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. K. Bauters, S. Schockaert, M. De Cock, D. Vermeir: Possibilistic answer set programming revisited, Proc. 26th Conf. Uncertainty in Artif. Intell. (UAI'10), Catalina Island (2010) pp. 48–55

    Google Scholar 

  72. W. Spohn: A general, nonprobabilistic theory of inductive reasoning. In: Uncertainty in Artificial Intelligence, Vol. 4, ed. by R.D. Shachter (North Holland, Amsterdam 1990) pp. 149–158

    Google Scholar 

  73. R. Jeffrey: The Logic of Decision, 2nd edn. (Chicago Univ. Press, Chicago 1983)

    Google Scholar 

  74. D. Dubois, H. Prade: A synthetic view of belief revision with uncertain inputs in the framework of possibility theory, Int. J. Approx. Reason. 17(2–3), 295–324 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Benferhat, D. Dubois, H. Prade, M.-A. Williams: A framework for iterated belief revision using possibilistic counterparts to Jeffrey's rule, Fundam. Inform. 99(2), 147–168 (2010)

    MathSciNet  MATH  Google Scholar 

  76. S. Benferhat, D. Dubois, L. Garcia, H. Prade: On the transformation between possibilistic logic bases and possibilistic causal networks, Int. J. Approx. Reason. 29, 135–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. N. Ben Amor, S. Benferhat: Graphoid properties of qualitative possibilistic independence relations, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 13, 59–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  78. N. Ben Amor, S. Benferhat, K. Mellouli: Anytime propagation algorithm for min-based possibilistic graphs, Soft Comput. 8, 50–161 (2003)

    Article  MATH  Google Scholar 

  79. C. Borgelt, J. Gebhardt, R. Kruse: Possibilistic graphical models. In: Computational Intelligence in Data Mining, ed. by G.D. Riccia (Springer, Wien 2000) pp. 51–68

    Chapter  Google Scholar 

  80. W. Guezguez, N. Ben Amor, K. Mellouli: Qualitative possibilistic influence diagrams based on qualitative possibilistic utilities, Eur. J. Oper. Res. 195, 223–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. H. Fargier, N. Ben Amor, W. Guezguez: On the complexity of decision making in possibilistic decision trees, Proc. UAI (2011) pp. 203–210

    Google Scholar 

  82. R. Ayachi, N. Ben Amor, S. Benferhat: Experimental comparative study of compilation-based inference in Bayesian and possibilitic networks, Lect. Notes Comput. Sci. 6857, 155–163 (2011)

    Article  Google Scholar 

  83. S. Benferhat: Interventions and belief change in possibilistic graphical models, Artif. Intell. 174(2), 177–189 (2010)

    Article  MathSciNet  Google Scholar 

  84. S. Benferhat, S. Smaoui: Inferring interventions in product-based possibilistic causal networks, Fuzzy Set. Syst. 169(1), 26–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. D. Dubois, H. Prade: What are fuzzy rules and how to use them, Fuzzy Set. Syst. 84, 169–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  86. D. Dubois, H. Prade, L. Ughetto: A new perspective on reasoning with fuzzy rules, Int. J. Intell. Syst. 18, 541–567 (2003)

    Article  MATH  Google Scholar 

  87. S. Galichet, D. Dubois, H. Prade: Imprecise specification of ill-known functions using gradual rules, Int. J. Approx. Reason. 35, 205–222 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  88. D. Dubois, E. Huellermeier, H. Prade: A systematic approach to the assessment of fuzzy association rules, Data Min. Knowl. Discov. 13, 167–192 (2006)

    Article  MathSciNet  Google Scholar 

  89. D. Dubois, F. Esteva, P. Garcia, L. Godo, R. de Lopez Mantaras, H. Prade: Fuzzy set modelling in cased-based reasoning, Int. J. Intell. Syst. 13(4), 345–373 (1998)

    Article  Google Scholar 

  90. D. Dubois, E. Huellermeier, H. Prade: Fuzzy set-based methods in instance-based reasoning, IEEE Trans. Fuzzy Syst. 10, 322–332 (2002)

    Article  Google Scholar 

  91. D. Dubois, E. Huellermeier, H. Prade: Fuzzy methods for case-based recommendation and decision support, J. Intell. Inf. Syst. 27, 95–115 (2006)

    Article  Google Scholar 

  92. E. Huellermeier, D. Dubois, H. Prade: Model adaptation in possibilistic instance-based reasoning, IEEE Trans. Fuzzy Syst. 10, 333–339 (2002)

    Article  Google Scholar 

  93. E. Huellermeier: Case-Based Approximate Reasoning (Springer, Berlin 2007)

    Google Scholar 

  94. D. Dubois, P. Fortemps: Computing improved optimal solutions to max–min flexible constraint satisfaction problems, Eur. J. Oper. Res. 118, 95–126 (1999)

    Article  MATH  Google Scholar 

  95. M. Inuiguchi, H. Ichihashi, Y. Kume: Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory, Inf. Sci. 67, 93–126 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  96. D. Dubois, H. Fargier, H. Prade: Refinements of the maximin approach to decision-making in fuzzy environment, Fuzzy Set. Syst. 81, 103–122 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  97. D. Dubois, P. Fortemps: Selecting preferred solutions in the minimax approach to dynamic programming problems under flexible constraints, Eur. J. Oper. Res. 160, 582–598 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  98. S. Kaci, H. Prade: Mastering the processing of preferences by using symbolic priorities in possibilistic logic, Proc. 18th Eur. Conf. Artif. Intell. (ECAI'08), Patras (2008) pp. 376–380

    Google Scholar 

  99. S. Benferhat, D. Dubois, S. Kaci, H. Prade: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions, Inf. Fusion 7, 135–150 (2006)

    Article  Google Scholar 

  100. D. Dubois, H. Fargier, J.-F. Bonnefon: On the qualitative comparison of decisions having positive and negative features, J. Artif. Intell. Res. 32, 385–417 (2008)

    MathSciNet  MATH  Google Scholar 

  101. J.-F. Bonnefon, D. Dubois, H. Fargier, S. Leblois: Qualitative heuristics for balancing the pros and the cons, Theor. Decis. 65, 71–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  102. A. Tversky, D. Kahneman: Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain. 5, 297–323 (1992)

    Article  MATH  Google Scholar 

  103. S. Kaci: Working with Preferences: Less Is More (Springer, Berlin 2011)

    Book  MATH  Google Scholar 

  104. L.J. Savage: The Foundations of Statistics (Dover, New York 1972)

    MATH  Google Scholar 

  105. D. Dubois, L. Godo, H. Prade, A. Zapico: On the possibilistic decision model: From decision under uncertainty to case-based decision, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7, 631–670 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  106. D. Dubois, H. Prade, P. Smets: New semantics for quantitative possibility theory, Lect. Notes Artif. Intell. 2143, 410–421 (2001)

    MathSciNet  MATH  Google Scholar 

  107. R.R. Yager: Possibilistic decision making, IEEE Trans. Syst. Man Cybern. 9, 388–392 (1979)

    Article  MathSciNet  Google Scholar 

  108. T. Whalen: Decision making under uncertainty with various assumptions about available information, IEEE Trans. Syst. Man Cybern. 14, 888–900 (1984)

    Article  MathSciNet  Google Scholar 

  109. D. Dubois, D. Le Berre, H. Prade, R. Sabbadin: Using possibilistic logic for modeling qualitative decision: ATMS-based algorithms, Fundam. Inform. 37, 1–30 (1999)

    MathSciNet  MATH  Google Scholar 

  110. H. Fargier, R. Sabbadin: Qualitative decision under uncertainty: Back to expected utility, Artif. Intell. 164, 245–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  111. M. Grabisch, T. Murofushi, M. Sugeno (Eds.): Fuzzy Measures and Integrals – Theory and Applications (Physica, Heidelberg 2000) pp. 314–322

    Google Scholar 

  112. D. Dubois, H. Prade, R. Sabbadin: Qualitative decision theory with Sugeno integrals. In: Fuzzy Measures and Integrals – Theory and Applications, (Physica, Heidelberg 2000) pp. 314–322

    Google Scholar 

  113. D. Dubois, H. Prade, R. Sabbadin: Decision-theoretic foundations of possibility theory, Eur. J. Oper. Res. 128, 459–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  114. D. Dubois, H. Fargier, P. Perny, H. Prade: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach, Artif. Intell. 148, 219–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  115. D. Dubois, H. Fargier, H. Prade, R. Sabbadin: A survey of qualitative decision rules under uncertainty. In: Decision-making Process-Concepts and Methods, ed. by D. Bouyssou, D. Dubois, M. Pirlot, H. Prade (Wiley, London 2009) pp. 435–473

    Chapter  Google Scholar 

  116. D. Dubois, H. Fargier: Making discrete sugeno integrals more discriminant, Int. J. Approx. Reason. 50(6), 880–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  117. R. Sabbadin, H. Fargier, J. Lang: Towards qualitative approaches to multi-stage decision making, Int. J. Approx. Reason. 19(3–4), 441–471 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  118. D. Dubois, H. Prade: When upper probabilities are possibility measures, Fuzzy Set. Syst. 49, 65–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  119. D. Dubois, S. Moral, H. Prade: A semantics for possibility theory based on likelihoods, J. Math. Anal. Appl. 205, 359–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  120. G. Shafer: Belief functions and possibility measures. In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic, ed. by J.C. Bezdek (CRC, Boca Raton 1987) pp. 51–84

    Google Scholar 

  121. S. Benferhat, D. Dubois, H. Prade: Possibilistic and standard probabilistic semantics of conditional knowledge bases, J. Log. Comput. 9, 873–895 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  122. V. Maslov: Méthodes Opératorielles (Mir Publications, Moscow 1987)

    MATH  Google Scholar 

  123. A. Puhalskii: Large Deviations and Idempotent Probability (Chapman Hall, London 2001)

    Book  MATH  Google Scholar 

  124. H.T. Nguyen, B. Bouchon-Meunier: Random sets and large deviations principle as a foundation for possibility measures, Soft Comput. 8, 61–70 (2003)

    Article  MATH  Google Scholar 

  125. G. De Cooman, D. Aeyels: Supremum-preserving upper probabilities, Inf. Sci. 118, 173–212 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  126. P. Walley, G. De Cooman: A behavioural model for linguistic uncertainty, Inf. Sci. 134, 1–37 (1999)

    Article  MATH  Google Scholar 

  127. J. Gebhardt, R. Kruse: The context model, Int. J. Approx. Reason. 9, 283–314 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  128. C. Joslyn: Measurement of possibilistic histograms from interval data, Int. J. Gen. Syst. 26, 9–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  129. Y. Ben-Haim: Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edn. (Academic Press, London 2006)

    Google Scholar 

  130. A. Neumaier: Clouds, fuzzy sets and probability intervals, Reliab. Comput. 10, 249–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  131. S. Destercke, D. Dubois, E. Chojnacki: Unifying practical uncertainty representations Part I: Generalized p-boxes, Int. J. Approx. Reason. 49, 649–663 (2008); Part II: Clouds, Int. J. Approx. Reason. 49, 664–677 (2008)

    Article  MathSciNet  Google Scholar 

  132. D. Dubois, H. Prade: Bayesian conditioning in possibility theory, Fuzzy Set. Syst. 92, 223–240 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  133. G. De Cooman: Integration and conditioning in numerical possibility theory, Ann. Math. Artif. Intell. 32, 87–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  134. P. Walley: Statistical Reasoning with Imprecise Probabilities (Chapman Hall, London 1991)

    Book  MATH  Google Scholar 

  135. G.J. Klir: A principle of uncertainty and information invariance, Int. J. Gen. Syst. 17, 249–275 (1990)

    Article  MATH  Google Scholar 

  136. J.F. Geer, G.J. Klir: A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty, Int. J. Gen. Syst. 20, 143–176 (1992)

    Article  MATH  Google Scholar 

  137. D. Dubois, H. Prade, S. Sandri: On possibility/probability transformations. In: Fuzzy Logic: State of the Art, ed. by R. Lowen, M. Roubens (Kluwer, Dordrecht 1993) pp. 103–112

    Chapter  Google Scholar 

  138. G.J. Klir, B.B. Parviz: Probability-possibility transformations: A comparison, Int. J. Gen. Syst. 21, 291–310 (1992)

    Article  MATH  Google Scholar 

  139. D. Dubois, H. Prade: On several representations of an uncertain body of evidence. In: Fuzzy Information and Decision Processes, ed. by M. Gupta, E. Sanchez (North-Holland, Amsterdam 1982) pp. 167–181

    Google Scholar 

  140. P. Smets: Constructing the pignistic probability function in a context of uncertainty. In: Uncertainty in Artificial Intelligence, Vol. 5, ed. by M. Henrion (North-Holland, Amsterdam 1990) pp. 29–39

    Google Scholar 

  141. A.W. Marshall, I. Olkin: Inequalities: Theory of Majorization and Its Applications (Academic, New York 1979)

    MATH  Google Scholar 

  142. Z.W. Birnbaum: On random variables with comparable peakedness, Ann. Math. Stat. 19, 76–81 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  143. D. Dubois, E. Huellermeier: Comparing probability measures using possibility theory: A notion of relative peakedness, Inter. J. Approx. Reason. 45, 364–385 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  144. D. Dubois, L. Foulloy, G. Mauris, H. Prade: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities, Reliab. Comput. 10, 273–297 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  145. G. Mauris, V. Lasserre, L. Foulloy: Fuzzy modeling of measurement data acquired from physical sensors, IEEE Trans. Meas. Instrum. 49, 1201–1205 (2000)

    Article  Google Scholar 

  146. C. Baudrit, D. Dubois: Practical representations of incomplete probabilistic knowledge, Comput. Stat. Data Anal. 51, 86–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  147. G. Mauris: Possibility distributions: A unified representation of usual direct-probability-based parameter estimation methods, Int. J. Approx. Reason. 52, 1232–1242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  148. D. Dubois, H. Prade, P. Smets: A definition of subjective possibility, Int. J. Approx. Reason. 48, 352–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  149. D. Dubois, H. Prade: Unfair coins and necessity measures: A possibilistic interpretation of histograms, Fuzzy Set. Syst. 10(1), 15–20 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  150. D. Dubois, H. Prade: Evidence measures based on fuzzy information, Automatica 21, 547–562 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  151. W. Van Leekwijck, E.E. Kerre: Defuzzification: Criteria and classification, Fuzzy Set. Syst. 108, 303–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  152. D. Dubois, H. Prade: The mean value of a fuzzy number, Fuzzy Set. Syst. 24, 279–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  153. R.R. Yager: A procedure for ordering fuzzy subsets of the unit interval, Inf. Sci. 24, 143–161 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  154. S. Chanas, M. Nowakowski: Single value simulation of fuzzy variable, Fuzzy Set. Syst. 25, 43–57 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  155. P. Bosc, H. Prade: An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain of imprecise databases. In: Uncertainty Management in Information Systems, ed. by P. Smets, A. Motro (Kluwer, Dordrecht 1997) pp. 285–324

    Chapter  Google Scholar 

  156. M. Cayrol, H. Farreny, H. Prade: Fuzzy pattern-matching, Kybernetes 11(2), 103–116 (1982)

    Article  Google Scholar 

  157. D. Dubois, H. Prade, C. Testemale: Weighted fuzzy pattern matching, Fuzzy Set. Syst. 28, 313–331 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  158. Y. Loiseau, H. Prade, M. Boughanem: Qualitative pattern matching with linguistic terms, AI Commun. 17(1), 25–34 (2004)

    MathSciNet  MATH  Google Scholar 

  159. P. Bosc, O. Pivert: Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 18(5), 565–603 (2010)

    Article  MathSciNet  Google Scholar 

  160. P. Bosc, O. Pivert: About projection-selection-join queries addressed to possibilistic relational databases, IEEE Trans. Fuzzy Syst. 13, 124–139 (2005)

    Article  Google Scholar 

  161. P. Bosc, O. Pivert, H. Prade: A model based on possibilistic certainty levels for incomplete databases, Proc. 3rd Int. Conf. Scalable Uncertainty Management (SUM 2009) (Springer, Washington 2009) pp. 80–94

    Chapter  Google Scholar 

  162. P. Bosc, O. Pivert, H. Prade: An uncertain database model and a query algebra based on possibilistic certainty, Proc. 2nd Int. Conf. Soft Comput. and Pattern Recognition (SoCPaR10), ed. by T.P. Martin (IEEE, Paris 2010) pp. 63–68

    Chapter  Google Scholar 

  163. A. HadjAli, S. Kaci, H. Prade: Database preference queries – A possibilistic logic approach with symbolic priorities, Ann. Math. Artif. Intell. 63, 357–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  164. P. Bosc, O. Pivert, H. Prade: A possibilistic logic view of preference queries to an uncertain database, Proc. 19th IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE10), Barcelona (2010)

    Google Scholar 

  165. D. Dubois, H. Prade: Handling bipolar queries in fuzzy information processing. In: Fuzzy Information Processing in Databases, Vol. 1, ed. by J. Galindo (Information Science Reference, Hershey 2008) pp. 97–114

    Google Scholar 

  166. S. Zadrozny, J. Kacprzyk: Bipolar queries – An aggregation operator focused perspective, Fuzzy Set. Syst. 196, 69–81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  167. P. Bosc, O. Pivert: On a fuzzy bipolar relational algebra, Inf. Sci. 219, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  168. D. Dubois, J. Mengin, H. Prade: Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion. In: Fuzzy Logic and the Semantic Web, ed. by E. Sanchez (Elsevier, Amsterdam 2005)

    Google Scholar 

  169. G. Qi, Q. Ji, J.Z. Pan, J. Du: Extending description logics with uncertainty reasoning in possibilistic logic, Int. J. Intell. Syst. 26(4), 353–381 (2011)

    Article  MATH  Google Scholar 

  170. D. Dubois, H. Prade: Possibility theory and data fusion in poorly informed environments, Control Eng. Pract. 2(5), 811–823 (1994)

    Article  Google Scholar 

  171. D. Dubois, H. Prade, R.R. Yager: Merging fuzzy information. In: Fuzzy Sets in Approximate Reasoning and Information Systems, The Handbooks of Fuzzy Sets Series, ed. by J. Bezdek, D. Dubois, H. Prade (Kluwer, Boston 1999) pp. 335–401

    Chapter  Google Scholar 

  172. M. Oussalah, H. Maaref, C. Barret: From adaptive to progressive combination of possibility distributions, Fuzzy Set. Syst. 139(3), 559–582 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  173. M. Oussalah: Study of some algebraic properties of adaptive combination rules, Fuzzy Set. Syst. 114(3), 391–409 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  174. S. Destercke, D. Dubois, E. Chojnacki: Possibilistic information fusion using maximum coherent subsets, IEEE Trans. Fuzzy Syst. 17, 79–92 (2009)

    Article  MathSciNet  Google Scholar 

  175. S. Benferhat, D. Dubois, H. Prade: From semantic to syntactic approaches to information combination in possibilistic logic. In: Aggregation and Fusion of Imperfect Information, ed. by B. Bouchon-Meunier (Physica-Verlag, Heidelberg 1998) pp. 141–161

    Chapter  Google Scholar 

  176. S. Benferhat: Merging possibilistic networks, Proc. 17th Eur. Conf. Artif. Intell. (Riva del Garda, Italy 2006)

    Google Scholar 

  177. S. Benferhat, D. Dubois, S. Kaci, H. Prade: Possibilistic merging and distance-based fusion of propositional information, Ann. Math. Artif. Intell. 34(1–3), 217–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  178. G. Qi, W. Liu, D.H. Glass, D.A. Bell: A split-combination approach to merging knowledge bases in possibilistic logic, Ann. Math. Artif. Intell. 48(1/2), 45–84 (2006)

    MathSciNet  MATH  Google Scholar 

  179. G. Qi, W. Liu, D.A. Bell: Measuring conflict and agreement between two prioritized knowledge bases in possibilistic logic, Fuzzy Set. Syst. 161(14), 1906–1925 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  180. S. Konieczny, J. Lang, P. Marquis: Distance based merging: A general framework and some complexity results, Proc. Int. Conf. Principles of Knowledge Representation and Reasoning (2002) pp. 97–108

    Google Scholar 

  181. S. Benferhat, D. Dubois, H. Prade, M.-A. Williams: A practical approach to revising prioritized knowledge bases, Stud. Log. 70, 105–130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  182. S. Barro, R. Marín, J. Mira, A.R. Patón: A model and a language for the fuzzy representation and handling of time, Fuzzy Set. Syst. 61, 153175 (1994)

    Article  MathSciNet  Google Scholar 

  183. D. Dubois, H. Prade: Processing fuzzy temporal knowledge, IEEE Trans. Syst. Man Cybern. 19(4), 729–744 (1989)

    Article  MathSciNet  Google Scholar 

  184. D. Dubois, A. Hadj Ali, H. Prade: Fuzziness and uncertainty in temporal reasoning, J. Univer. Comput. Sci. 9(9), 1168–1194 (2003)

    MathSciNet  Google Scholar 

  185. M.A. Cárdenas Viedma, R. Marín, I. Navarrete: Fuzzy temporal constraint logic: A valid resolution principle, Fuzzy Set. Syst. 117(2), 231–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  186. D. Dubois, A. Hadj Ali, H. Prade: A possibility theory-based approach to the handling of uncertain relations between temporal points, Int. J. Intell. Syst. 22, 157–179 (2007)

    Article  MATH  Google Scholar 

  187. D. Dubois, J. Lang, H. Prade: Timed possibilistic logic, Fundam. Inform. 15, 211–234 (1991)

    MathSciNet  MATH  Google Scholar 

  188. D. Dubois, H. Fargier, H. Prade: Fuzzy constraints in job-shop scheduling, J. Intell. Manuf. 6, 215–234 (1995)

    Article  Google Scholar 

  189. R. Slowinski, M. Hapke (Eds.): Scheduling under Fuzziness (Physica, Heidelberg 2000)

    MATH  Google Scholar 

  190. D. Dubois, H. Fargier, P. Fortemps: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge, Eur. J. Oper. Res. 147, 231–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  191. S. Chanas, P. Zielinski: Critical path analysis in the network with fuzzy activity times, Fuzzy Set. Syst. 122, 195–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  192. S. Chanas, D. Dubois, P. Zielinski: Necessary criticality in the network with imprecise activity times, IEEE Trans. Man Mach. Cybern. 32, 393–407 (2002)

    Article  MATH  Google Scholar 

  193. J. Fortin, P. Zielinski, D. Dubois, H. Fargier: Criticality analysis of activity networks under interval uncertainty, J. Sched. 13, 609–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  194. D. Dubois, J. Fortin, P. Zielinski: Interval PERT and its fuzzy extension. In: Production Engineering and Management Under Fuzziness, ed. by C. Kahraman, M. Yavuz (Springer, Berlin 2010) pp. 171–199

    Chapter  Google Scholar 

  195. S. Chanas, A. Kasperski: Possible and necessary optimality of solutions in the single machine scheduling problem with fuzzy parameters, Fuzzy Set. Syst. 142, 359–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  196. A. Kasperski: A possibilistic approach to sequencing problems with fuzzy parameters, Fuzzy Set. Syst. 150, 77–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  197. J. Fortin, A. Kasperski, P. Zielinski: Some methods for evaluating the optimality of elements in matroids with ill-known weights, Fuzzy Set. Syst. 16, 1341–1354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  198. A. Kasperski, P. Zielenski: Possibilistic bottleneck combinatorial optimization problems with ill-known weights, Int. J. Approx. Reason. 52, 1298–1311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  199. J. C. Helton, W. L. Oberkampf (Eds.): Alternative representations of uncertainty, Reliab. Eng. Syst. Saf. 85(1--3), (2004)

    Google Scholar 

  200. D. Guyonnet, B. Bourgine, D. Dubois, H. Fargier, B. Côme, J.-P. Chilès: Hybrid approach for addressing uncertainty in risk assessments, J. Environ. Eng. 129, 68–78 (2003)

    Article  Google Scholar 

  201. D. Dubois, H. Prade: Random sets and fuzzy interval analysis, Fuzzy Set. Syst. 42, 87–101 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  202. C. Baudrit, D. Guyonnet, D. Dubois: Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment, IEEE Trans. Fuzzy Syst. 14, 593–608 (2006)

    Article  Google Scholar 

  203. C. Baudrit, I. Couso, D. Dubois: Joint propagation of probability and possibility in risk analysis: Towards a formal framework, Inter. J. Approx. Reason. 45, 82–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  204. C. Baudrit, D. Dubois, N. Perrot: Representing parametric probabilistic models tainted with imprecision, Fuzzy Set. Syst. 159, 1913–1928 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  205. M. Gil (Ed.): Fuzzy random variables, Inf. Sci. 133, (2001) Special Issue

    Google Scholar 

  206. R. Sabbadin: Towards possibilistic reinforcement learning algorithms, FUZZ-IEEE 2001, 404–407 (2001)

    Google Scholar 

  207. S. Benferhat, D. Dubois, S. Lagrue, H. Prade: A big-stepped probability approach for discovering default rules, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(Supplement), 1–14 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  208. H. Prade, M. Serrurier: Bipolar version space learning, Int. J. Intell. Syst. 23, 1135–1152 (2008)

    Article  MATH  Google Scholar 

  209. H. Prade, M. Serrurier: Introducing possibilistic logic in ILP for dealing with exceptions, Artif. Intell. 171, 939–950 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  210. O. Wolkenhauer: Possibility Theory with Applications to Data Analysis (Research Studies Press, Chichester 1998)

    MATH  Google Scholar 

  211. H. Tanaka, P.J. Guo: Possibilistic Data Analysis for Operations Research (Physica, Heidelberg 1999)

    MATH  Google Scholar 

  212. D. Cayrac, D. Dubois, H. Prade: Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application, IEEE Trans. Fuzzy Syst. 4, 251–269 (1996)

    Article  Google Scholar 

  213. S. Boverie: Online diagnosis of engine dyno test benches: A possibilistic approach, Proc. 15th. Eur. Conf. Artif. Intell. (IOS, Lyon, Amsterdam 2002) pp. 658–662

    Google Scholar 

  214. L. Amgoud, H. Prade: Reaching agreement through argumentation: A possibilistic approach, Proc. 9th Int. Conf. Principles of Knowledge Representation and Reasoning (KR'04), Whistler, BC, Canada (AAAI, Palo Alto 2004) pp. 175–182

    Google Scholar 

  215. L. Amgoud, H. Prade: Using arguments for making and explaining decisions, Artif. Intell. 173(3–4), 413–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  216. D. Dubois, F. de Dupin Saint-Cyr, H. Prade: A possibility-theoretic view of formal concept analysis, Fundam. Inform. 75, 195–213 (2007)

    MathSciNet  MATH  Google Scholar 

  217. Y. Djouadi, H. Prade: Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices, Fuzzy Optim. Decis. Mak. 10, 287–309 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  218. D. Dubois, H. Prade: Generalized possibilistic logic, Lect. Notes Comput. Sci. 6929, 428–432 (2011)

    Article  Google Scholar 

  219. D. Dubois, H. Prade, S. Schockaert: Rules and meta-rules in the framework of possibility theory and possibilistic logic, Sci. Iran. 18(3), 566–573 (2011)

    Article  MATH  Google Scholar 

  220. D. Dubois, H. Prade: Toward multiple-agent extensions of possibilistic logic, Proc. IEEE Int. Conf. on Fuzzy Syst. (FUZZ-IEEE'07), London (2007) pp. 187–192

    Google Scholar 

  221. D. Dubois, H. Prade, A. Rico: A possibilistic logic view of Sugeno integrals. In: Proc. Eurofuse Workshop on Fuzzy Methods for Knowledge-Based Systems (EUROFUSE 2011), Advances in Intelligent and Soft Computing, Vol. 107, ed. by P. Melo-Pinto, P. Couto, C. Serôdio, J. Fodor, B. De Baets (Springer, Berlin 2011) pp. 19–30

    Google Scholar 

  222. G. Banon: Constructive decomposition of fuzzy measures in terms of possibility and necessity measures, Proc. VIth IFSA World Congress, Vol. I (São Paulo, Brazil 1995) pp. 217–220

    Google Scholar 

  223. D. Dubois: Fuzzy measures on finite scales as families of possibility measures, Proc. 7th Conf. Eur. Soc. Fuzzy Logic Technol. (EUSFLAT'11) (Atlantis, Annecy 2011) pp. 822–829

    Google Scholar 

  224. H. Prade, A. Rico: Possibilistic evidence, Lect. Notes Artif. Intell. 6717, 713–724 (2011)

    MathSciNet  MATH  Google Scholar 

  225. D. Dubois, H. Prade, A. Rico: Qualitative capacities as imprecise possibilities, Lect. Notes Comput. Sci. 7958, 169–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  226. P. Diamond: Fuzzy least squares, Inf. Sci. 46, 141–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  227. K. Loquin, D. Dubois: Kriging and epistemic uncertainty: A critical discussion. In: Methods for Handling Imperfect Spatial Information, Vol. 256, ed. by R. Jeansoulin, O. Papini, H. Prade, S. Schockaert (Springer, Berlin 2010) pp. 269–305

    Chapter  Google Scholar 

  228. D. Dubois, H. Prade: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets, Fuzzy Set. Syst. 192, 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  229. K. Loquin, D. Dubois: A fuzzy interval analysis approach to kriging with ill-known variogram and data, Soft Comput. 16(5), 769–784 (2012)

    Article  Google Scholar 

  230. H. Prade, M. Serrurier: Maximum-likelihood principle for possibility distributions viewed as families of probabilities, Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'11), Taipei (2011) pp. 2987–2993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubois, D., Prade, H. (2015). Possibility Theory and Its Applications: Where Do We Stand?. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics