Abstract
The theory of classical measures and integral reflects the genuine property of several quantities in standard physics and/or geometry, namely the σ-additivity. Though monotone measure not assuming σ-additivity appeared naturally in models extending the classical ones (for example, inner and outer measures, where the related integral was considered by Vitali already in 1925), their intensive research was initiated in the past 40 years by the computer science applications in areas reflecting human decisions, such as economy, psychology, multicriteria decision support, etc. In this chapter, we summarize basic types of monotone measures together with the basic monotone measures-based integrals, including the Choquet and Sugeno integrals, and we introduce the concept of universal integrals proposed by Klement etal to give a common roof for all mentioned integrals. Benvenuti’s integrals linked to semicopulas are shown to be a special class of universal integrals. Up to several other integrals, we also introduce decomposition integrals due to Even and Lehrer, and show which decomposition integrals are inside the framework of universal integrals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CPT:
-
cummulative prospect theory
References
R.C. Archibald: Mathematics before the Greeks, Science 71(1831), 109–121 (1930)
D. Smith: History of Mathematics (Dover Publications, New York 1958)
J. Kepler: Nova Stereometria Doliorum Vinariorum (Linz 1615)
G.W. Leibniz: Nova methodus pro maximis et minimis (New method for maximums and minimums; 1684). In: A Source Book in Mathematics, ed. by D.J. Struik (Harvard Univ. Press, Cambridge 1969) p. 271
I. Newton: Principia (1687) (S. Chandrasekhar: Newtons Principia for the Common Reader, Oxford Univ. Press, Oxford, 1995)
G.F.B. Riemann: On the Hypotheses Which Underlie Geometry, Habilitation Thesis (Universität Göttingen, Göttingen 1854), published first in Proc. R. Philos. Soc. Göttingen 13, 87-132 (1854) in German
S.B. Chae: Lebesgue Integration (Marcel Dekker, Inc., New York 1980)
G. Vitali: Sulla definizione di integrale delle funzioni di una variabile, Ann. Mat. Pura Appl. IV 2, 111–121 (1925)
G. Choquet: Theory of capacities, Ann. Inst. Fourier (Grenoble) 5, 131–292 (1953)
L.A. Zadeh: Fuzzy sets, Inform. Control 8, 338–353 (1965)
M. Sugeno: Theory of Fuzzy Integrals and Applications, Ph.D. Thesis (Tokyo Inst. of Technology, Tokyo 1974)
M. Sugeno, T. Murofushi: Pseudo–additive measures and integrals, J. Math. Anal. Appl. 122, 197–222 (1987)
E. Pap: Integral generated by decomposable measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)
S. Weber: $\bot$–decomposable measures and integrals for Archimedean t–conorms $\bot$, J. Math. Anal. Appl. 101, 114–138 (1984)
L.A. Zadeh: Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1, 3–28 (1978)
D. Dubois, H. Prade: Fuzzy Sets and Systems, Theory and Applications (Academic, New York 1980)
M. Grabisch, T. Murofushi, M. Sugeno (Eds.): Fuzzy Measures and Integrals, Theory and Applications (Physica, Heidelberg 2000)
E. Pap: Null–Additive Set Functions (Kluwer, Dordrecht 1995)
Z. Wang, G.J. Klir: Generalized Measure Theory (Springer, New York 2009)
E. Pap (Ed.): Handbook of Measure Theory (Elsevier, Amsterdam 2002)
D. Schmeidler: Integral Representation without additivity, Proc. Am. Math. Soc. 97(2), 255–261 (1986)
D. Schmeidler: Subjective probability and expected utility without additivity, Econometrica 57, 571–587 (1989)
J. Šipoš: Integral with respect to a pre-measure, Math. Slov. 29, 141–155 (1979)
P. Benvenuti, R. Mesiar, D. Vivona: Monotone set functions-based integrals. In: Handbook of Measure Theory, ed. by E. Pap (Elsevier, Amsterdam 2002) pp. 1329–1379
M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap: Aggregation Functions, Encyclopedia of Mathematics and Its Applications, Vol. 127 (Cambridge Univ. Press, Cambridge 2009)
D. Denneberg: Non–Additive Measure and Integral (Kluwer, Dordrecht 1994)
A. Chateauneuf, J.-Y. Jaffray: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Math. Soc. Sci. 17, 263–283 (1989)
A.P. Dempster: Upper and lower probabilities induced by a multi-valued mapping, Ann. Math. Stat. 38, 325–339 (1967)
G. Shafer: A Mathematical Theory of Evidence (Princeton Univ. Press, Princeton, NJ 1976)
R.R. Yager, L. Liu: Classic works of the Dempster–Shafer theory of belief functions. In: Studies in Fuzziness and Soft Computing, ed. by R.R. Yager, L. Liu (Springer, Berlin 2008)
R. Mesiar, J. Li, E. Pap: The Choquet integral as Lebesgue integral and related inequalities, Kybernetika 46(6), 1098–1107 (2010)
R. Mesiar: k-order additive fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(6), 561–568 (1999)
M. Sugeno: Fuzzy measure and fuzzy integral, Trans. Soc. Instrum. Control Eng. 8, 95–102 (1972)
R. Mesiar: k-order Pan-discrete fuzzy measures, Proc. IFSA'97 1, 488–490 (1997)
J.L. Marichal: An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework, IEEE Trans. Fuzzy Syst. 9(1), 164–172 (2001)
S. Ovchinnikov, A. Dukhovny: Integral representation of invariant functionals, J. Math. Anal. Appl. 244, 228–232 (2000)
P.S. Mostert, A.L. Shield: On the structure of semigroups on a compact manifold with boundary, Ann. Math. 65, 117–143 (1957)
N. Shilkret: Maxitive measures and integration, Indag. Math. 33, 109–116 (1971)
W. Sander, J. Siedekum: Multiplication, distributivity and fuzzy-integral II & III, Kybernetika 41(4), 497–518 (2005)
T. Murofushi, M. Sugeno: Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral, Fuzzy Sets Syst. 42, 51–57 (1991)
R. Mesiar: Choquet–like integrals, J. Math. Anal. Appl. 194, 477–488 (1995)
E. Pap: Pseudo-convolution and its applications. In: Fuzzy Measures and Integrals, Theory and Applications, ed. by M. Grabisch, T. Murofushi, M. Sugeno (Physica, Heidelberg 2000) pp. 171–204
W. Sander, J. Siedekum: Multiplication, distributivity and fuzzy-integral I, Kybernetika 41(3), 397–422 (2005)
E.P. Klement, R. Mesiar, E. Pap: A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)
S. Weber: Two integrals and some modified version – critical remarks, Fuzzy Sets Syst. 20, 97–105 (1986)
R.B. Nelsen: An Introduction to Copulas, Lecture Notes in Statistics, Vol. 139, 2nd edn. (Springer, New York 2006)
H. Imaoka: Comparison between three fuzzy integrals. In: Fuzzy Measures and Integrals, Theory and Applications, ed. by M. Grabisch, T. Murofushi, M. Sugeno (Physica, Heidelberg 2000) pp. 273–286
E.P. Klement, R. Mesiar, E. Pap: Measure-based aggregation operators, Fuzzy Sets Syst. 142(1), 3–14 (2004)
H. Imaoka: On a subjective evaluation model by a generalized fuzzy integral, Int. J. Uncertain. Fuzziness Knowl.–Based Syst. 5, 517–529 (1997)
Q. Yang: The pan-integral on fuzzy measure space, Fuzzy Math. 3, 107–114 (1985), in Chinese
Z. Wang, G.J. Klir: Fuzzy Measure Theory (Plenum, New York 1992)
R. Mesiar, J. Rybárik: Pan-operations structure, Fuzzy Sets Syst. 74, 365–369 (1995)
Q. Zhang, R. Mesiar, J. Li, P. Struk: Generalized Lebesgue integral, Int. J. Approx. Reason. 52(3), 427–443 (2011)
E. Lehrer: A new integral for capacities, Econ. Theory 39, 157–176 (2009)
E. Lehrer, R. Teper: The concave integral over large spaces, Fuzzy Sets Syst. 159, 2130–2144 (2008)
Y. Even, E. Lehrer: Decomposition-integral: unifying Choquet and the concave integrals, Econ. Theory 56, 33–58 (2014)
R. Mesiar, A. Stupňanová: Decomposition integrals, Int. J. Approx. Reason. 54(8), 1252–1259 (2013)
A. Stupňanová: Decomposition integrals, Comm. Comput. Info. Sci. 300, 542–548 (2012)
A. Mesiarová-Zemánková, R. Mesiar, K. Ahmad: The balancing Choquet integral, Fuzzy Sets Syst. 161(7), 2243–2255 (2010)
R. Mesiar, A. Mesiarová-Zemánková, K. Ahmad: Discrete Choquet integral and some of its symmetric extensions, Fuzzy Sets Syst. 184(1), 148–155 (2011)
A. Tversky, D. Kahneman: Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain. 5, 297–323 (1992)
A. Tversky, D. Kahneman: Rational choice and the framing of decisions, J. Bus. 59(278), 251–278 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Klement, E.P., Mesiar, R. (2015). Monotone Measures-Based Integrals. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)