Abstract
This chapter is concerned with basic concepts of solution for coalitional games with fuzzy coalitions in the case of finitely many players and transferable utility. The focus is on those solutions which preoccupy the main part of cooperative game theory (the core and the Shapley value). A detailed discussion or just the comprehensive overview of current trends in fuzzy games is beyond the reach of this chapter. Nevertheless, we mention current developments and briefly discuss other solution concepts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M.J. Osborne, A. Rubinstein: A Course in Game Theory (MIT Press, Cambridge 1994)
D. Butnariu: Fuzzy games: A description of the concept, Fuzzy Sets Syst. 1, 181–192 (1978)
J.-P. Aubin: Coeur et valeur des jeux flous à paiements latéraux, Comptes Rendus de l'Académie des Sciences Série A 279, 891–894 (1974)
L.S. Shapley, M. Shubik: On Market Games, J. Econ. Theory 1, 9–25 (1969)
B. Peleg, P. Sudhölter: Introduction to the Theory of Cooperative Games, Theory and Decision Library: Series C. Game Theory, Vol. 34, 2nd edn. (Springer, Berlin 2007)
R.J. Aumann, M. Maschler: Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory 36(2), 195–213 (1985)
L.S. Shapley: Cores of convex games, Int. J. Game Theory 1, 11–26 (1972)
L.S. Shapley: A value for n-person games. In: Contributions to the Theory of Games. Vol. II, Annals of Mathematics Studies, Vol. 28, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ. Press, Princeton 1953) pp. 307–317
H.P. Young: Monotonic solutions of cooperative games, Int. J. Game Theory 14, 65–72 (1985)
S. Hart, A. Mas-Colell: Potential, value and consistency, Econometrica 57, 589–614 (1989)
R. Weber: Probabilistic values for games. In: The Shapley Value, ed. by A.E. Roth (Cambridge Univ. Press, Cambridge 1988) pp. 101–120
J.F. Banzhaf III: Weighted voting does not work: A mathematical analysis, Rutgers Law Rev. 19, 317–343 (1965)
Y. Azrieli, E. Lehrer: On some families of cooperative fuzzy games, Int. J. Game Theory 36(1), 1–15 (2007)
J.-P. Aubin: Optima and Equilibria, Graduate Texts in Mathematics, Vol. 140, 2nd edn. (Springer, Berlin 1998)
D. Butnariu, T. Kroupa: Shapley mappings and the cumulative value for n-person games with fuzzy coalitions, Eur. J. Oper. Res. 186(1), 288–299 (2008)
R. Branzei, D. Dimitrov, S. Tijs: Models in Cooperative Game Theory, Lecture Notes in Economics and Mathematical Systems, Vol. 556 (Springer, Berlin 2005)
E. Lehrer: Allocation processes in cooperative games, Int. J. Game Theory 31(3), 341–351 (2003)
L.S.Y. Wu: A dynamic theory for the class of games with nonempty cores, SIAM J. Appl. Math. 32(2), 328–338 (1977)
D. Butnariu, T. Kroupa: Enlarged cores and bargaining schemes in games with fuzzy coalitions, Fuzzy Sets Syst. 5(160), 635–643 (2009)
M. Tsurumi, T. Tanino, M. Inuiguchi: A Shapley function on a class of cooperative fuzzy games, Eur. J. Oper. Res. 129(3), 596–618 (2001)
D. Denneberg: Non-Additive Measure and Integral, Theory and Decision Library B. Mathematical and Statistical Methods Series, Vol. 27 (Kluwer, Dordrecht 1994)
G. Owen: Multilinear extensions of games, Manag. Sci. 18, P64–P79 (1971)
G. Owen: Game Theory, 3rd edn. (Academic, San Diego 1995)
E. Shellshear: A note on characterizing core stability with fuzzy games, Int. Game Theory Rev. 13(01), 105–118 (2011)
W. Yang, J. Liu, X. Liu: Aubin cores and bargaining sets for convex cooperative fuzzy games, Int. J. Game Theory 40(3), 467–479 (2011)
J. Liu, X. Liu: Fuzzy extensions of bargaining sets and their existence in cooperative fuzzy games, Fuzzy Sets Syst. 188(1), 88–101 (2012)
M. Keyzer, C. van Wesenbeeck: Optimal coalition formation and surplus distribution: Two sides of one coin, Eur. J. Oper. Res. 215(3), 604–615 (2011)
H.-C. Wu: Proper cores and dominance cores of fuzzy games, Fuzzy Optim. Decis. Mak. 11(1), 47–72 (2012)
M. Mareš, M. Vlach: Disjointness of fuzzy coalitions, Kybernetika 44(3), 416–429 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kroupa, T., Vlach, M. (2015). Basic Solutions of Fuzzy Coalitional Games. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)