Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Voice Activity Detection Using the Combination of Short-Term and Long-Term Spectral Patterns

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 484))

Included in the following conference series:

  • 2392 Accesses

Abstract

In this paper, we present a robust voice activity detection (VAD) algorithm using the combination of short-term and long-term spectral patterns. We analyze the benefit of short-term and long-term spectral patterns, respectively, when applied to robust VAD. Based on the analysis, we find the combination of short-term and long-term spectral patterns can be used to achieve a higher VAD accuracy than one of them only in noisy environments. We evaluate its performance under four types of noises and six types of signal-to-noise ratio (SNR) conditions. Compared with standard VAD schemes, the evaluation almost demonstrates promising results with the proposed scheme being comparable or favorable over the whole test set for various criterions of the VAD evaluation.

This research was supported in part by the China National Nature Science Foundation (No.91120303, No.61273267, No.90820011 and No.90820303).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Evangelopoulos, G., Maragos, P.: Speech event detection using multiband modulation energy. In: Proceedings of INTERSPEECH, pp. 685–688 (2005)

    Google Scholar 

  2. Kotnik, B., Kacic, Z., Horvat, B.: A multiconditional robust front-end feature extraction with a noise reduction procedure based on improved spectral subtraction algorithm. In: Proceedings of INTERSPEECH, pp. 197–200 (2001)

    Google Scholar 

  3. Yoo, I.-C., Yook, D.: Robust voice activity detection using the spectral peaks of vowel sounds. ETRI Journal 31(4) (2009)

    Google Scholar 

  4. Moattar, M.H., Homayounpour, M.M., Kalantari, N.K.: A new approach for robust realtime voice activity detection using spectral pattern. In: Proceedings of ICASSP, pp. 4478–4481 (2010)

    Google Scholar 

  5. Soleimani, S.A., Ahadi, S.M.: Voice activity detection based on combination of multiple features using linear/kernel discriminant analyses. In: Proceedings of ICTTA, pp. 1–5 (2008)

    Google Scholar 

  6. Ramırez, J., Segura, J.C., Benıtez, M., de la Torre, A., Rubio, A.: A new adaptive long-term spectral estimation voice activity detector. In: Proceedings of EUROSPEECH, pp. 3041–3044 (2003)

    Google Scholar 

  7. Ramırez, J., Segura, J.C., Benıtez, C., De La Torre, A., Rubio, A.: Efficient voice activity detection algorithms using long-term speech information. Speech Communication 42(3), 271–287 (2004)

    Article  Google Scholar 

  8. Ramirez, J., Segura, J.C., Benitez, C., de La Torre, A., Rubio, A.: Voice activity detection with noise reduction and long-term spectral divergence estimation. In: Proceedings of ICASSP (2004)

    Google Scholar 

  9. Benyassine, A., Shlomot, E., Su, H.-Y., Massaloux, D., Lamblin, C., Petit, J.-P.: ITU-T Recommendation G. 729 Annex B: a silence compression scheme for use with G. 729 optimized for V. 70 digital simultaneous voice and data applications. IEEE Communications Magazine 35(9), 64–73 (1997)

    Article  Google Scholar 

  10. ETSI, Voice activity detector(VAD) for Adaptive MultiRate(AMR) speech traffic channels, ETSI EN 301 708 Recommendation (1999)

    Google Scholar 

  11. Garofolo, J.S., et al.: Getting started with the DARPA TIMIT CD-ROM: An acoustic phonetic continuous speech database. In: National Institute of Standards and Technology (NIST), Gaithersburgh, MD, vol. 107 (1988)

    Google Scholar 

  12. Sarikaya, R., Sarikaya, R., Hansen, J.H.L., Hansen, J.H.L.: Robust speech activity detection in the presence of noise. In: Proceedings of ICSLP (1998)

    Google Scholar 

  13. Beritelli, F., Casale, S., Cavallaero, A.: A robust voice activity detector for wireless communications using soft computing. IEEE Journal on Selected Areas in Communications 16(9), 1818–1829 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, YW., Liu, WJ. (2014). Robust Voice Activity Detection Using the Combination of Short-Term and Long-Term Spectral Patterns. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45643-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45642-2

  • Online ISBN: 978-3-662-45643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics