Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reverse Order and Forward Order Laws for \(A_{T,S}^{(2)}\)

  • Chapter
  • First Online:
Generalized Inverses: Theory and Computations

Part of the book series: Developments in Mathematics ((DEVM,volume 53))

  • 1994 Accesses

Abstract

The reverse order law for the generalized inverses of a matrix product yields a class of interesting fundamental problems in the theory of the generalized inverses of matrices. They have attracted considerable attention since the middle 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.N.E. Greville, Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966)

    Article  MathSciNet  Google Scholar 

  2. R.E. Hartwig, The reverse order law revisited. Linear Algebra Appl. 76, 241–246 (1986)

    Article  MathSciNet  Google Scholar 

  3. Y. Tian, The Moore-Penrose inverse of a triple matrix product. Math. Pract. Theory 1, 64–70 (1992). in Chinese

    MathSciNet  MATH  Google Scholar 

  4. Y. Tian, Reverse order laws for the generalized inverse of multiple matrix products. Linear Algebra Appl. 211, 85–100 (1994)

    Article  MathSciNet  Google Scholar 

  5. W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl. 19, 772–775 (1998)

    Article  MathSciNet  Google Scholar 

  6. G. Wang, J. Gao, Reverse order laws for weighted Moore-Penrose inverse of a triple matrix product. J. Shanghai Normal Univ. 29, 1–8 (2000). in Chinese

    Google Scholar 

  7. H. Tian, On the reverse order laws \((AB)^D = B^DA^D\). J. Math. Res. Expo. 19, 355–358 (1999)

    MathSciNet  MATH  Google Scholar 

  8. G. Wang, The reverse order law for Drazin inverses of multiple matrix products. Linear Algebra Appl. 348, 265–272 (2002)

    Article  MathSciNet  Google Scholar 

  9. D.S. Djordjević, Unified approach to the reverse order rule for generalized inverses. Acta Sci. Math. (Szeged) 67, 761–776 (2001)

    MathSciNet  MATH  Google Scholar 

  10. A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn. (Springer, New York, 2003)

    Google Scholar 

  11. S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations (Pitman, London, 1979)

    Google Scholar 

  12. G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974)

    Article  MathSciNet  Google Scholar 

  13. R.E. Hartwig, Block generalized inverses. Arch. Ration. Mech. Anal. 61, 197–251 (1976)

    Article  MathSciNet  Google Scholar 

  14. G. Wang, B. Zheng, The reverse order law for the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 157, 295–305 (2004)

    MathSciNet  MATH  Google Scholar 

  15. W. Sun, Y. Wei, Triple reverse-order law for weighted generalized inverses. Appl. Math. Comput. 25, 221–229 (2002)

    MathSciNet  MATH  Google Scholar 

  16. M. Wei, Equivalent conditions for generalized inverses of products. Linear Algebra Appl. 266, 347–363 (1997)

    Article  MathSciNet  Google Scholar 

  17. A.R. Depierro, M. Wei, Reverse order laws for reflexive generalized inverses of products of matrices. Linear Algebra Appl. 277, 299–311 (1996)

    Article  MathSciNet  Google Scholar 

  18. M. Wei, Reverse order laws for generalized inverses of multiple matrix products. Linear Algebra Appl. 293, 273–288 (1999)

    Article  MathSciNet  Google Scholar 

  19. H.J. Werner, When is \(B^-A^-\) a generalized inverse of \(AB\)? Linear Algebra Appl. 210, 255–263 (1994)

    Article  MathSciNet  Google Scholar 

  20. Q. Xu, C. Song, G. Wang, Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse. Linear Algebra Appl. 530, 366–383 (2017)

    Article  MathSciNet  Google Scholar 

  21. A.R. De Pierro, M. Wei, Reverse order law for reflexive generalized inverses of products of matrices. Linear Algebra Appl. 277(1–3), 299–311 (1998)

    Article  MathSciNet  Google Scholar 

  22. Y. Takane, Y. Tian, H. Yanai, On reverse-order laws for least-squares g-inverses and minimum norm g-inverses of a matrix product. Aequ. Math. 73(1–2), 56–70 (2007)

    Article  MathSciNet  Google Scholar 

  23. M. Wei, W. Guo, Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices. Linear Algebra Appl. 342, 117–132 (2002)

    Article  MathSciNet  Google Scholar 

  24. Y. Tian, Reverse order laws for the Drazin inverse of a triple matrix product. Publ. Math. Debr. 63(3), 261–277 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Y. Tian, Reverse order laws for the weighted Moore-Penrose inverse of a triple matrix product with applications. Int. Math. J. 3(1), 107–117 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G., Wei, Y., Qiao, S. (2018). Reverse Order and Forward Order Laws for \(A_{T,S}^{(2)}\). In: Generalized Inverses: Theory and Computations. Developments in Mathematics, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-13-0146-9_4

Download citation

Publish with us

Policies and ethics