Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine Learning Approach to Evolutionary Computation

  • Chapter
  • First Online:
Evolutionary Approach to Machine Learning and Deep Neural Networks
  • 4549 Accesses

Abstract

This chapter gives several methods of evolutionary computation enhanced with machine learning techniques. The employed machine learning schemes are bagging, boosting, Gröbner bases, relevance vector machine, affinity propagation, SVM, and k-nearest neighbors. These are applied to the extension of GP (Genetic Programming), DE (Differential Evolution), and PSO (Particle Swarm Optimization).

It is intriguing that computer scientists use the term genotype and phenotype when talking about their programs.

(John Maynard Smith, The Origins of Life: From the Birth of Life to the Origin of Language)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Introns are structures that do not affect fitness values. In GP, two types of introns are known: (1) semantic introns: code segments that are executed but have no effect on the overall result, e.g., (\(+\) 3 (− x x)), (2) syntactic introns: non-executed code segments, e.g., (and false (\(+\) 2 3)).

  2. 2.

    For all invertible matrices A, B, C, and D of correct sizes, \((A+BDC) ^{-1} =A ^{-1}-A ^{-1}B(D ^{-1} +CA ^{-1} B) ^{-1} CA ^{-1}\) holds true.

  3. 3.

    keijzer 6, 7, 8, and 9 are easy targets. keijzer1 is relatively easier compared with keijzer 2 and 3.

  4. 4.

    Other techniques include Artificial Bee Colony Programming (ABCP), GP with standard crossover (SC), GP with no same mate (NSM), GP with context aware crossover (CAC), GP with soft brood selection (SBS), GP with semantic similarity-based crossover (SSC). See [20] for details.

  5. 5.

    SVM-Light Support Vector Machine, http://svmlight.joachims.org/.

References

  1. Baker Jr., G.A.: The theory and application of the Padé approximant method. Adv. Theor. Phys. 1, 1 (1965)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bollegala, D., Noman, N., Iba, H.: RankDE: learning a ranking function for information retrieval using differential evolution. In: GECCO 11 Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1771–1778. ACM Press (2011)

    Google Scholar 

  4. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  5. Cox, D., Little, J., O’shea, D.: Ideals, Varieties, Algorithms, 3rd edn. Springer, Berlin (1992)

    Book  Google Scholar 

  6. Dabhi, V.K., Chaudhary, S.: A survey on techniques of improving generalization ability of genetic programming solutions (2012)

    Google Scholar 

  7. De Melo, V.V.: Kaizen programming. In: Proceedings of the 2014 an Conference on Genetic and Evolutionary Computation (GECCO), pp. 895–902 (2014)

    Google Scholar 

  8. De Melo, V.V.: Breast cancer detection with logistic regression improved by features constructed by Kaizen programming in a hybrid approach. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 16–23 (2016)

    Google Scholar 

  9. De Melo, V.V., Banzhaf, W.: Predicting high-performance concrete compressive strength using features constructed by Kaizen programming. In: Proceedings of 2015 Brazilian Conference on Intelligent Systems (BRACIS), pp. 25–30. IEEE (2015)

    Google Scholar 

  10. De Melo, V.V., Banzhaf, W.: Improving the prediction of material properties of concrete using Kaizen programming with simulated annealing. Neurocomputing 246, 25–44 (2017)

    Article  Google Scholar 

  11. Dervis, K., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Inf. Sci. 209, 1–15 (2012)

    Article  Google Scholar 

  12. Drucker, H.: Improving regression using boosting techniques. In: Proceedings of International Conference on Machine Learning (ICML97) (1997)

    Google Scholar 

  13. Feng, J.: The relevance vector machine technique for automatic feature selection in genetic programming, Master thesis, Graduate School of Information and Communication Engineering, University of Tokyo (2017)

    Google Scholar 

  14. Feng, J., Iba, H.: An evolutionary construction of basis functions based on GP and RVM. In: Proceedings of Evolutionary Computation Symposium, Dec. 10–11, Kujukuri, Chiba, Japan (2016)

    Google Scholar 

  15. Gitlow, H., Gitlow, S., Oppenheim, A., Oppenheim, R.: Tools and Methods for the Improvement of Quality. Irwin Series in Quantitative Analysis for Business. Taylor & Francis, New York (1989)

    MATH  Google Scholar 

  16. Hettiarachchi, D.S., Iba, H.: An evolutionary computational approach to humanoid motion planning. Int. J. Adv. Robot. Syst. 9(167) (2012)

    Article  Google Scholar 

  17. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO-1999) (1999)

    Google Scholar 

  18. Imai, M.: Kaizen (Ky’zen), the Key to Japan’s Competitive Success. McGraw-Hill, Singapore (1986)

    Google Scholar 

  19. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  20. Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Inf. Sci. 209, 1–15 (2012)

    Article  Google Scholar 

  21. Kera, H., Iba, H.: Vanishing ideal genetic programming. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 5018–5025 (2016)

    Google Scholar 

  22. Liu, Y., An, A., Huang, X.: Boosting prediction accuracy on imbalanced datasets with SVM ensembles. Advances in Knowledge Discovery and Data Mining (PAKDD 2006). Lecture Notes in Computer Science, pp. 107–118 (2006)

    Chapter  Google Scholar 

  23. Lu, X., Tang, K., Yao, X.: Classification-assisted differential evolution for computationally expensive problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC2011), pp. 1986–1993 (2011)

    Google Scholar 

  24. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798. ACM (2012)

    Google Scholar 

  25. Michael, S., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  26. Möller, H.M., Buchberger, B.: The construction of multivariate polynomials with preassigned zeros. In: Proceedings of the European Computer Algebra Conference on Computer Algebra, pp. 24–31 (1982)

    Google Scholar 

  27. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)

    Article  Google Scholar 

  28. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming, Lulu. com (2008)

    Google Scholar 

  29. Rad, H.I., Feng, J., Iba, H.: GP-RVM: efficient genetic programming-based symbolic regression using relevance vector machine, submitted to the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2018)

    Google Scholar 

  30. Storn, R., Price, K.V.: Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  31. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, vol. 2005005, Nanyang Technological University, Singapore (2005)

    Google Scholar 

  32. Suzuki, K., Iba, H.: PSO with clustering by means of affinity propagation. In: Proceedings of Evolutionary Computation Symposium, Dec. 10–11, Kujukuri, Chiba, Japan (2016)

    Google Scholar 

  33. Tipping, M.E., Faul, A.C.: Fast marginal likelihood maximization for sparse Bayesian models. In: Proceedings of AISTATS, pp. 1–8 (2003)

    Google Scholar 

  34. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

    Article  Google Scholar 

  35. Xiaofen, L., Tang, K., Yao, X.: Classification assisted differential evolution for computationally expensive problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1986–1993 (2011)

    Google Scholar 

  36. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)

    Article  Google Scholar 

  37. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  38. Zhan, Z.-H., Zhang, J., Li, Y., Chung, H.S.-H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(6), 1362–1381 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iba .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iba, H. (2018). Machine Learning Approach to Evolutionary Computation. In: Evolutionary Approach to Machine Learning and Deep Neural Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-0200-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0200-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0199-5

  • Online ISBN: 978-981-13-0200-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics