Abstract
Trajectory prediction stands as a fundamental technology in the development of seamless vehicle-infrastructure collaboration systems, tasked with anticipating the immediate and extended path trajectories of all vehicles on the road to enable safer and more accurate driving decisions. In pursuit of boosting the accuracy of these predictions, this paper utilizes a graph-based structural methodology to construct a highly-detailed rendering of the driving scenario, embedding an agent-centric modeling technique to formulate a probabilistic motion model for vehicles. Furthermore, it embraces Generative Adversarial Imitation Learning (GAIL) to ingeniously craft driving tactics, ultimately generating a spectrum of multi-modal predicted trajectory options. Simulations conducted on the nuScenes motion prediction dataset demonstrate that the proposed method generates trajectories that align closely with the inherent traits of actual road scenarios, exhibiting superior accuracy compared to extant methods. These results underscore the promise of the technique in enhancing the reliability and predictive capability of trajectory forecasts in complex traffic environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, M., Krizhevsky, A., Ogale, A.: Chauffeurnet: learning to drive by imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079 (2018)
Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)
Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)
Cui, J., Ma, L., Wang, R., Liu, M.: Research and optimization of GPSR routing protocol for vehicular ad-hoc network. China Commun. 19(10), 194–206 (2022)
Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)
Eiffert, S., Li, K., Shan, M., Worrall, S., Sukkarieh, S., Nebot, E.: Probabilistic crowd GAN: multimodal pedestrian trajectory prediction using a graph vehicle-pedestrian attention network. IEEE Robot. Autom. Lett. 5(4), 5026–5033 (2020)
Gao, J., et al.: Vectornet: encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533 (2020)
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome: graph-oriented heatmap output for future motion estimation. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 9107–9114. IEEE (2022)
Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Hong, J., Sapp, B., Philbin, J.: Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8454–8462 (2019)
Kim, B., et al.: Lapred: lane-aware prediction of multi-modal future trajectories of dynamic agents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14636–14645 (2021)
Li, J., Ma, H., Zhang, Z., Li, J., Tomizuka, M.: Spatio-temporal graph dualattention network for multi-agent prediction and tracking. IEEE Trans. Intell. Transp. Syst. 23(8), 10556–10569 (2021)
Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32
Liu, M., Chang, W., Li, C., Ji, Y., Li, R., Feng, M.: Discrete interactions in decentralized multiagent coordination: a probabilistic perspective. IEEE Trans. Cogn. Dev. Syst. 13(4), 1010–1022 (2020)
Liu, M., Jia, Y., Li, C., Fu, P., Zhang, Z.: Multi-agent cooperative intrusion detection based on generative data augmentation. In: Tari, Z., Li, K., Wu, H. (eds.) ICA3PP 2023. LNCS, vol. 14492. pp. 311–328. Springer, Cham (2023). https://doi.org/10.1007/978-981-97-0811-6_19
Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 165–170. IEEE (2021)
Mo, Y., Zhang, P., Chen, Z., Ran, B.: A method of vehicle-infrastructure cooperative perception based vehicle state information fusion using improved kalman filter. Multimedia Tools Appl. 1–18 (2022)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, Y., Zhang, D., Liu, Y., Tan, K.L.: Trajectory forecasting with neural networks: An empirical evaluation and a new hybrid model. IEEE Trans. Intell. Transp. Syst. 21(10), 4400–4409 (2019)
Yu, X., Cui, J., Liu, M.: An embedding carrier-free steganography method based on Wasserstein GAN. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13156. pp. 532–545. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95388-1_35
Acknowledgements
This work is financially supported by the National Natural Science Foundation of China under Grant 62106060.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, M., Lin, F., Zhang, Z., Jia, Y., Cui, J. (2024). An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning. In: Huang, DS., Zhang, X., Zhang, C. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14879. Springer, Singapore. https://doi.org/10.1007/978-981-97-5675-9_16
Download citation
DOI: https://doi.org/10.1007/978-981-97-5675-9_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5674-2
Online ISBN: 978-981-97-5675-9
eBook Packages: Computer ScienceComputer Science (R0)