Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14879))

Included in the following conference series:

  • 408 Accesses

Abstract

Trajectory prediction stands as a fundamental technology in the development of seamless vehicle-infrastructure collaboration systems, tasked with anticipating the immediate and extended path trajectories of all vehicles on the road to enable safer and more accurate driving decisions. In pursuit of boosting the accuracy of these predictions, this paper utilizes a graph-based structural methodology to construct a highly-detailed rendering of the driving scenario, embedding an agent-centric modeling technique to formulate a probabilistic motion model for vehicles. Furthermore, it embraces Generative Adversarial Imitation Learning (GAIL) to ingeniously craft driving tactics, ultimately generating a spectrum of multi-modal predicted trajectory options. Simulations conducted on the nuScenes motion prediction dataset demonstrate that the proposed method generates trajectories that align closely with the inherent traits of actual road scenarios, exhibiting superior accuracy compared to extant methods. These results underscore the promise of the technique in enhancing the reliability and predictive capability of trajectory forecasts in complex traffic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, M., Krizhevsky, A., Ogale, A.: Chauffeurnet: learning to drive by imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079 (2018)

  2. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  3. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)

  4. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)

    Google Scholar 

  5. Cui, J., Ma, L., Wang, R., Liu, M.: Research and optimization of GPSR routing protocol for vehicular ad-hoc network. China Commun. 19(10), 194–206 (2022)

    Article  Google Scholar 

  6. Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)

  7. Eiffert, S., Li, K., Shan, M., Worrall, S., Sukkarieh, S., Nebot, E.: Probabilistic crowd GAN: multimodal pedestrian trajectory prediction using a graph vehicle-pedestrian attention network. IEEE Robot. Autom. Lett. 5(4), 5026–5033 (2020)

    Article  Google Scholar 

  8. Gao, J., et al.: Vectornet: encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533 (2020)

    Google Scholar 

  9. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome: graph-oriented heatmap output for future motion estimation. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 9107–9114. IEEE (2022)

    Google Scholar 

  10. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  11. Hong, J., Sapp, B., Philbin, J.: Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8454–8462 (2019)

    Google Scholar 

  12. Kim, B., et al.: Lapred: lane-aware prediction of multi-modal future trajectories of dynamic agents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14636–14645 (2021)

    Google Scholar 

  13. Li, J., Ma, H., Zhang, Z., Li, J., Tomizuka, M.: Spatio-temporal graph dualattention network for multi-agent prediction and tracking. IEEE Trans. Intell. Transp. Syst. 23(8), 10556–10569 (2021)

    Article  Google Scholar 

  14. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

  15. Liu, M., Chang, W., Li, C., Ji, Y., Li, R., Feng, M.: Discrete interactions in decentralized multiagent coordination: a probabilistic perspective. IEEE Trans. Cogn. Dev. Syst. 13(4), 1010–1022 (2020)

    Article  Google Scholar 

  16. Liu, M., Jia, Y., Li, C., Fu, P., Zhang, Z.: Multi-agent cooperative intrusion detection based on generative data augmentation. In: Tari, Z., Li, K., Wu, H. (eds.) ICA3PP 2023. LNCS, vol. 14492. pp. 311–328. Springer, Cham (2023). https://doi.org/10.1007/978-981-97-0811-6_19

  17. Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 165–170. IEEE (2021)

    Google Scholar 

  18. Mo, Y., Zhang, P., Chen, Z., Ran, B.: A method of vehicle-infrastructure cooperative perception based vehicle state information fusion using improved kalman filter. Multimedia Tools Appl. 1–18 (2022)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, Y., Zhang, D., Liu, Y., Tan, K.L.: Trajectory forecasting with neural networks: An empirical evaluation and a new hybrid model. IEEE Trans. Intell. Transp. Syst. 21(10), 4400–4409 (2019)

    Article  Google Scholar 

  21. Yu, X., Cui, J., Liu, M.: An embedding carrier-free steganography method based on Wasserstein GAN. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13156. pp. 532–545. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95388-1_35

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China under Grant 62106060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M., Lin, F., Zhang, Z., Jia, Y., Cui, J. (2024). An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning. In: Huang, DS., Zhang, X., Zhang, C. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14879. Springer, Singapore. https://doi.org/10.1007/978-981-97-5675-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5675-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5674-2

  • Online ISBN: 978-981-97-5675-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics