Abstract
We present almost matching upper and lower time bounds for the simulation of Turing machines with many queues (resp. tapes, stacks) on Turing machines with few queues. In particular the power of two queues in comparison with other storage types is clarified, which resolves a question left open by [LLV86]. We show: Multistorage Turing machines can be simulated in time O(t(n)1+1/k) on k-queue machines. Every online simulation of k+1 queues (or of two tapes) on k queues requires time Ω(t(n)1+1/k/polylogt(n)). The lower bounds are based on Kolmogorov complexity.
Preview
Unable to display preview. Download preview PDF.
References
Stål O. Aanderaa. On k-tape versus (k − 1)-tape real time computation. In SIAM-AMS Proceedings, volume 7: Complexity of Computation, pages 75–96, 1974.
José Luis Balcázar, Josep Dáz, and Joaquim Gabarró. Structural Complexity, volume 11 and 22 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1988–90.
Cristian Calude. Theories of Computational Complexity, volume 35 of Annals of Discrete Mathematics. Elsevier North-Holland, Amsterdam, 1988.
Pavol Ďūriš, Zvi Galil, Wolfgang Johannes Paul, and Karl Rüdiger Reischuk. Two nonlinear lower bounds. Information and Control, 60:1–11, 1984.
Martin Dietzfelbinger. The speed of copying on one-tape off-line Turing machines. Information Processing Letters, 33:83–89, 1989/90.
Frederick C. Hennie. One-tape, off-line Turing machine computations. Information and Control, 8:553–578, 1965.
Frederick C. Hennie. On-line Turing machine computations. IEEE Transactions on Electronic Computers, 15:35–44, 1966.
Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117:285–306, 1965.
Frederick C. Hennie and Richard E. Stearns. Two-tape simulation of multitape Turing machines. Journal of the ACM, 13:533–546, 1966.
Ming Li. Simulating two pushdown stores by one tape in \(O(n^{1.5} \sqrt {\log n} )\) time. Journal of Computer and System Sciences, 37:101–116, 1988. also: 26th FOCS 1985.
Ming Li, Luc Longpré, and Paul M. B. Vitányi. The power of the queue. In 1 st Structure in Complexity Theory, pages 219–233. ACM, IEEE, 1986.
Ming Li and Paul M. B. Vitányi. Tape versus queue and stacks: The lower bounds. Information and Computation, 78:56–85, 1988.
Ming Li and Paul M. B. Vitányi. Kolmogorov complexity and its applications. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity, pages 187–254. Elsevier North-Holland, Amsterdam, 1990.
Wolfgang Maass. Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Transactions of the American Mathematical Society, 292:675–693, 1985.
Wolfgang Maass, Georg Schnitger, and Endre Szemerédi. Two tapes are better than one for off-line Turing machines. In 19 th STOC, pages 94–100. ACM, 1987.
Wolfgang Johannes Paul. On-line simulation of k+1 tapes by k tapes requires nonlinear time. Information and Control, 53:1–8, 1982.
Wolfgang Johannes Paul, Joel I. Seiferas, and Janos Simon. An information theoretic approach to time bounds for on-line computation. Journal of Computer and System Sciences, 23:108–126, 1981.
Michael O. Rabin. Real time computation. Israel Journal of Mathematics, 1:203–211, 1963.
Paul M. B. Vitányi. On two-tape real-time computation and queues. Journal of Computer and System Sciences, 29:303–311, 1984.
Author information
Authors and Affiliations
Corresponding author
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmidt, M. (1991). On the power of several queues. In: Choffrut, C., Jantzen, M. (eds) STACS 91. STACS 1991. Lecture Notes in Computer Science, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020788
Download citation
DOI: https://doi.org/10.1007/BFb0020788
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53709-0
Online ISBN: 978-3-540-47002-1
eBook Packages: Springer Book Archive