
A

Syntax Rule Summary

Below we present the syntax of PSL in Backus-Naur Form (BNF).

A.1 Conventions

The formal syntax described uses the following extended Backus-Naur Form
(BNF).

a. The initial character of each word in a nonterminal is capitalized. For ex-
ample:

PSL Statement

A nonterminal is either a single word or multiple words separated by
underscores. When a multiple word nonterminal containing underscores
is referenced within the text (e.g., in a statement that describes the se-
mantics of the corresponding syntax), the underscores are replaced with
spaces.

b. Boldface words are used to denote reserved keywords, operators, and punc-
tuation marks as a required part of the syntax. For example:

vunit ( ;

c. The ::= operator separates the two parts of a BNF syntax definition. The
syntax category appears to the left of this operator and the syntax de-
scription appears to the right of the operator. For example, item (d) shows
three options for a Vunit Type.

d. A vertical bar separates alternative items (use one only) unless it appears
in boldface, in which case it stands for itself. For example:
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Vunit Type ::= vunit | vprop | vmode

e. Square brackets enclose optional items unless it appears in boldface, in
which case it stands for itself. For example:

Sequence Declaration ::=
sequence Name [ ( Formal Parameter List ) ] DEF SYM Sequence ;

indicates that ( Formal Parameter List ) is an optional syntax item for
Sequence Declaration, whereas

| Sequence [ * [ Range ] ]

indicates that (the outer) square brackets are part of the syntax, while
Range is optional.

f. Braces enclose a repeated item unless it appears in boldface, in which
case it stands for itself. A repeated item may appear zero or more times;
the repetitions occur from left to right as with an equivalent left-recursive
rule. Thus, the following two rules are equivalent:

Formal Parameter List ::= Formal Parameter { ; Formal Parameter }
Formal Parameter List ::=

Formal Parameter | Formal Parameter List ; Formal Parameter

g. A colon (:) in a production starts a line comment unless it appears in
boldface, in which case it stands for itself.

h. If the name of any category starts with an italicized part, it is equivalent
to the category name without the italicized part. The italicized part is
intended to convey some semantic information. For example, vunit Name
is equivalent to Name.

i. Flavor macros, containing embedded underscores, are shown in uppercase.
These reflect the various HDLs that can be used within the PSL syntax
and show the definition for each HDL. The general format is the term
Flavor Macro, then the actual macro name, followed by the = operator,
and, finally, the definition for each of the HDLs. For example:

Flavor Macro RANGE SYM =
SystemVerilog: : / Verilog: : / VHDL: to / GDL: / ..
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shows the range symbol macro (RANGE SYM). See for further details
about flavor macros.

The main text uses italicized type when a term is being defined, and monospace
font for examples and references to constants such as 0, 1, or x values.

A.2 Tokens

PSL syntax is defined in terms of primitive tokens, which are character se-
quences that act as distinct symbols in the language.

Each PSL keyword is a single token. Some keywords end in one or two non-
alphabetic characters (‘!’ or ‘ ’ or both). Those characters are part of the
keyword, not separate tokens.

Each of the following character sequences is also a token:

[ ] ( ) { }

, ; : .. = :=

* + |−> |=> <−> −>

[* [+] [-> [=

&& & || | !

$ @ . /

Finally, for a given flavor, the tokens of the corresponding HDL are tokens of
PSL.

A.3 HDL dependencies

PSL depends upon the syntax and semantics of an underlying hardware de-
scription language. In particular, PSL syntax includes productions that refer
to nonterminals in SystemVerilog, Verilog, VHDL, or GDL. PSL syntax also
includes Flavor Macros that cause each flavor of PSL to match that of the
underlying HDL for that flavor.

For SystemVerilog, the PSL syntax refers to the following nonterminals in
the IEEE P1800 syntax:
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– module or generate item declaration
– module or generate item
– list of variable identifiers
– identifier
– expression
– constant expression

For Verilog, the PSL syntax refers to the following nonterminals in the IEEE
Std 1364 syntax:

– module or generate item declaration
– module or generate item
– list of variable identifiers
– identifier
– expression
– constant expression
– task port type

For VHDL, the PSL syntax refers to the following nonterminals in the IEEE
Std 1076 syntax:

– block declarative item
– concurrent statement
– design unit
– identifier
– expression
– entity aspect

For SystemC, the PSL syntax refers to the following nonterminals in the IEEE
P1666 syntax:

– simple type specifier
– expression
– event expression
– declaration
– statement
– identifier

For GDL, the PSL syntax refers to the following nonterminals in the GDL
syntax:

– module item declaration
– module item
– module declaration
– identifier
– expression
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A.3.1 Verilog extensions

For the Verilog flavor, PSL extends the forms of declaration that can be used
in the modeling layer by defining two additional forms of type declaration.

Extended Verilog Declaration ::=
Verilog module or generate item declaration

| Extended Verilog Type Declaration

Extended Verilog Type Declaration ::=
Finite Integer Type Declaration

| Structure Type Declaration

Finite Integer Type Declaration ::=
integer Integer Range list of variable identifiers ;

Structure Type Declaration ::=
struct { Declaration List } list of variable identifiers ;

Integer Range ::=
( constant expression : constant expression )

Declaration List ::=
HDL Variable or Net Declaration { HDL Variable or Net Declaration }

HDL Variable or Net Declaration ::=
net declaration

| reg declaration
| integer declaration

A.3.2 Flavor macros

Flavor Macro DEF SYM =
SystemVerilog: = / Verilog: = / VHDL: is / SystemC: = / GDL: :=

Flavor Macro RANGE SYM =
SystemVerilog: : / Verilog: : / VHDL: to / SystemC: : / GDL: ..

Flavor Macro AND OP =
SystemVerilog: && / Verilog: && / VHDL: and / SystemC: && / GDL: &

Flavor Macro OR OP =
SystemVerilog: || / Verilog: || / VHDL: or / SystemC: || / GDL: |
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Flavor Macro NOT OP =
SystemVerilog: ! / Verilog: ! / VHDL: not / SystemC: ! / GDL: !

Flavor Macro MIN VAL =
SystemVerilog: 0 / Verilog: 0 / VHDL: 0 / SystemC: 0 / GDL: null

Flavor Macro MAX VAL =
SystemVerilog: $ / Verilog: inf / VHDL: inf / SystemC: inf / GDL: null

Flavor Macro HDL EXPR =
SystemVerilog: SystemVerilog Expression
/ Verilog: Verilog Expression
/ VHDL: VHDL Expression
/ SystemC: SystemC Expression
/ GDL: GDL Expression

Flavor Macro HDL CLOCK EXPR =
SystemVerilog: SystemVerilog Event Expression
/ Verilog: Verilog Event Expression
/ VHDL: VHDL Expression
/ SystemC: SystemC Event Expression
/ GDL: GDL Expression

Flavor Macro HDL UNIT =
SystemVerilog: SystemVerilog module declaration
/ Verilog: Verilog module declaration
/ VHDL: VHDL design unit
/ SystemC: SystemC class sc module
/ GDL: GDL module declaration

Flavor Macro HDL DECL =
SystemVerilog: SystemVerilog module or generate item declaration
/ Verilog: Extended Verilog Declaration
/ VHDL: VHDL block declarative item
/ SystemC: SystemC declaration
/ GDL: GDL module item declaration

Flavor Macro HDL STMT =
SystemVerilog: SystemVerilog module or generate item
/ Verilog: Verilog module or generate item
/ VHDL: VHDL concurrent statement
/ SystemC: SystemC statement
/ GDL: GDL module item
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Flavor Macro HDL VARIABLE TYPE =
SystemVerilog : SystemVerilog data type

/ Verilog : Verilog Variable Type
/ VHDL : VHDL subtype indication
/ SystemC: SystemC simple type specifier
/ GDL : GDL variable type

Flavor Macro HDL RANGE =
VHDL: range attribute name

Flavor Macro LEFT SYM =
SystemVerilog: [ / Verilog: [ / VHDL: ( / SystemC: ( / GDL: (

Flavor Macro RIGHT SYM =
SystemVerilog: ] / Verilog: ] / VHDL: ) / SystemC: ) / GDL: )

A.4 Syntax productions

The rest of this appendix defines the PSL syntax.

A.4.1 Verification units

PSL Specification ::=
{ Verification Item }

Verification Item ::=
HDL UNIT | Verification Unit

Verification Unit ::=
Vunit Type PSL Identifier [ ( Hierarchical HDL Name ) ] {
{ Inherit Spec }
{ Vunit Item }

}

Vunit Type ::=
vunit | vprop | vmode

Hierarchical HDL Name ::=
HDL Module NAME { Path Separator instance Name }

instance Name ::=
HDL or PSL Identifier
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HDL Module Name ::=
HDL Module Name [ ( HDL Module Name )]

Path Separator ::=
. | /

Inherit Spec ::=
inherit vunit Name { , vunit Name } ;

Vunit Item ::=
HDL DECL

| HDL STMT
| PSL Declaration
| PSL Directive

A.4.2 PSL declarations

PSL Declaration ::=
Property Declaration

| Sequence Declaration
| Clock Declaration

Property Declaration ::=
property PSL Identifier [ ( Formal Parameter List ) ] DEF SYM Property ;

Formal Parameter List ::=
Formal Parameter { ; Formal Parameter }

Formal Parameter ::=
Param Spec PSL Identifier { , PSL Identifier }

Param Spec ::=
const

| [const] Value Parameter
| sequence
| property

Value Parameter ::=
HDL Type

| PSL Type Class

HDL Type ::=
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hdltype HDL VARIABLE TYPE

PSL Type Class ::= boolean | bit | bitvector | numeric | string

Sequence Declaration ::=
sequence PSL Identifier [ ( Formal Parameter List ) ] DEF SYM Sequence ;

Clock Declaration ::=
default clock DEF SYM Clock Expression ;

Clock Expression ::=
boolean Name

| boolean Built In Function Call
| ( Boolean )
| ( HDL CLOCK EXPR )

Actual Parameter List ::=
Actual Parameter { , Actual Parameter }

Actual Parameter ::=
AnyType|Number | Boolean | Property | Sequence

A.4.3 PSL directives

PSL Directive ::=
[ Label : ] Verification Directive

Label ::=
PSL Identifier

HDL or PSL Identifier ::=
SystemVerilog Identifier

| Verilog Identifier
| VHDL Identifier
| SystemC Identifier
| GDL Identifier
| PSL Identifier

Verification Directive ::=
Assert Directive

| Assume Directive
| Assume Guarantee Directive
| Restrict Directive

From IEEE Std.1850-2005. Copyright 2005 IEEE. All rights reserved.*



184 Appendix A. Syntax Rule Summary

| Restrict Guarantee Directive
| Cover Directive
| Fairness Statement

Assert Directive ::=
assert Property [ report String ] ;

Assume Directive ::=
assume Property ;

Assume Guarantee Directive ::=
assume guarantee Property [ report String ] ;

Restrict Directive ::=
restrict Sequence ;

Restrict Guarantee Directive ::=
restrict guarantee Sequence [ report String ] ;

Cover Directive ::=
cover Sequence [ report String ] ;

Fairness Statement ::=
fairness Boolean ;

| strong fairness Boolean , Boolean ;

A.4.4 PSL properties

Property ::=
Replicator Property

| FL Property
| OBE Property

Replicator ::=
forall Parameter Definition :

Index Range ::=
LEFT SYM finite Range RIGHT SYM

| ( HDL RANGE )

Value Set ::=
{ Value Range { , Value Range } }

| boolean

From IEEE Std.1850-2005. Copyright 2005 IEEE. All rights reserved.*



A.4. Syntax productions 185

Value Range ::=
Value

| finite Range

Value ::=
Boolean

| Number

FL Property ::=
Boolean

| ( FL Property )
| Sequence [ ! ]
| FL property Name [ ( Actual Parameter List ) ]
| FL Property @ Clock Expression
| FL Property abort Boolean
| FL Property async abort Boolean
| FL Property sync abort Boolean
| Parameterized Property

: Logical Operators :
| NOT OP FL Property
| FL Property AND OP FL Property
| FL Property OR OP FL Property
:
| FL Property -> FL Property
| FL Property <−> FL Property

: Primitive LTL Operators :
| X FL Property
| X! FL Property
| F FL Property
| G FL Property
| [ FL Property U FL Property ]
| [ FL Property W FL Property ]

: Simple Temporal Operators :
| always FL Property
| never FL Property
| next FL Property
| next! FL Property
| eventually! FL Property
:
| FL Property until! FL Property
| FL Property until FL Property
| FL Property until! FL Property
| FL Property until FL Property
:
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| FL Property before! FL Property
| FL Property before FL Property
| FL Property before! FL Property
| FL Property before FL Property

: Extended Next (Event) Operators :
| X [ Number ] ( FL Property )
| X! [ Number ] ( FL Property )
| next [ Number ] ( FL Property )
| next! [ Number ] ( FL Property )
:
| next a [ finite Range ] ( FL Property )
| next a! [ finite Range ] ( FL Property )
| next e [ finite Range ] ( FL Property )
| next e! [ finite Range ] ( FL Property )
:
| next event! ( Boolean ) ( FL Property )
| next event ( Boolean ) ( FL Property )
| next event! ( Boolean ) [ positive Number ] ( FL Property )
| next event ( Boolean ) [ positive Number ] ( FL Property )
:
| next event a! ( Boolean ) [ finite positive Range ] ( FL Property )
| next event a ( Boolean ) [ finite positive Range ] ( FL Property )
| next event e! ( Boolean ) [ finite positive Range ] ( FL Property )
| next event e ( Boolean ) [ finite positive Range ] ( FL Property )

: Operators on SEREs :
| { SERE } ( FL Property )
| Sequence |−> FL Property
| Sequence |=> FL Property

A.4.5 Sequential Extended Regular Expressions (SEREs)

SERE ::=
Boolean

| Sequence
| SERE ; SERE
| SERE : SERE
| Compound SERE

Compound SERE ::=
Repeated SERE

| Braced SERE
| Clocked SERE
| Compound SERE | Compound SERE
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| Compound SERE & Compound SERE
| Compound SERE && Compound SERE
| Compound SERE within Compound SERE
| Parameterized SERE

A.4.6 Parameterized Properties and SEREs

Parameterized Property ::=
for Parameters Definition : And Or Property OP ( FL Property )

Parameterized SERE ::=
for Parameters Definition : And Or SERE OP { SERE }

Parameters Definition ::=
Parameter Definition { Parameter Definition }

Parameter Definition ::=
PSL Identifier [ Index Range ] in Value Set

And OR Property OP ::=
AND OP

| OR OP

And Or SERE Op :: =
&& | & | |

A.4.7 Sequences

Sequence ::=
Sequence Instance

| Repeated SERE
| Braced SERE
| Clocked SERE

Repeated SERE ::=
Boolean [* [ Count ] ]

| Sequence [* [ Count ] ]
| [* [ Count ] ]
| Boolean [+]
| Sequence [+]
| [+]
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| Boolean [= Count ]
| Boolean [-> [ positive Count ] ]

Braced SERE ::=
{ SERE }

Sequence Instance ::=
sequence Name [ ( Actual Parameter List ) ]

Clocked SERE ::=
Braced SERE @ Clock Expression

Count ::=
Number

| Range

Range ::=
Low Bound RANGE SYM High Bound

Low Bound ::=
Number

| MIN VAL

High Bound ::=
Number

| MAX VAL

A.4.8 Forms of expression

Any Type ::=
HDL or PSL Expression

Bit ::=
bit HDL or PSL Expression

Boolean ::=
boolean HDL or PSL Expression

BitVector ::=
bitvector HDL or PSL Expression

Number ::=
numeric HDL or PSL Expression
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String ::=
string HDL or PSL Expression

HDL or PSL Expression ::=
HDL Expression

| PSL Expression
| Built In Function Call
| Union Expression

HDL Expression ::=
HDL EXPR

PSL Expression ::=
Boolean -> Boolean

| Boolean <−> Boolean

Built In Function Call ::=
prev (Any Type [ , Number [ , Clock Expression ]] )

| next ( Any Type )
| stable ( Any Type [ , Clock Expression ] )
| rose ( Bit [ , Clock Expression ] )
| fell ( Bit [ , Clock Expression ] )
| ended ( Sequence [ , Clock Expression ])
| isunknown ( BitVector )
| countones ( BitVector )
| onehot ( BitVector )
| onehot0 ( BitVector )
| nondet ( Value List )
| nondet vector ( Number, Value List )

Union Expression ::=
Any Type union Any Type

A.4.9 Optional Branching Extension

OBE Property ::=
Boolean

| ( OBE Property )
| OBE property Name [ ( Actual Parameter List ) ]

: Logical Operators :
| NOT OP OBE Property
| OBE Property AND OP OBE Property
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| OBE Property OR OP OBE Property
| OBE Property -> OBE Property
| OBE Property <−> OBE Property

: Universal Operators :
| AX OBE Property
| AG OBE Property
| AF OBE Property
| A [ OBE Property U OBE Property ]

:Existential Operators :
| EX OBE Property
| EG OBE Property
| EF OBE Property
| E [ OBE Property U OBE Property ]
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Formal Syntax and Semantics

This appendix formally describes the syntax and semantics of the temporal
layer.

B.1 Typed-text representation of symbols

Table B.1 shows the mapping of various symbols used in this definition to the
corresponding typed-text PSL representation, in the different flavors.

Table B.1: Typed-text symbols in the SystemVerilog, Verilog, VHDL, SystemC and GDL

flavors

SystemVerilog Verilog VHDL SystemC GDL

→ |-> |-> |-> |-> |->

⇒ |=> |=> |=> |=> |=>

→ -> -> -> -> ->

↔ <-> <-> <-> <-> <->

¬ ! ! not ! !

∧ && && and && &

∨ || || or || |

.. : : to : ..

〈 〉 [ ] [ ] ( ) ( ) ( )

NOTE −

For reasons of simplicity, the syntax given herein is more flexible than the one defined

by the extended BNF (given in Appendix A). That is, some of the expressions which

are legal here are not legal under the BNF grammar. Users should use the stricter

syntax, as defined by the BNF grammar in Appendix A.
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B.2 Syntax

The logic PSL is defined with respect to a non-empty set of atomic propo-
sitions P and a given set of boolean expressions B over P . We assume two
designated boolean expression true and false belong to B.

Definition 1 (Sequential Extended Regular Expressions (SEREs))

1. Every boolean expression b ∈ B is a SERE.
2. If r, r1, and r2 are SEREs, and c is a boolean expression, then the following

are SEREs:
• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• r1 && r2 • [∗0] • r[∗] • r@c

Definition 2 (FL formulas)

1. If b is a boolean expression, then both b and b! are FL formulas.
2. If ϕ and ψ are FL formulas, r, r1, r2 are SEREs, and b a boolean expres-

sion, then the following are FL formulas:
• (ϕ) • ¬ϕ • ϕ ∧ ψ

• r → ϕ • r! • r
• X! ϕ • [ϕ U ψ] • ϕ@b
• ϕ async abort b • ϕ sync abort b

NOTE −

We define formal semantics for both strong and weak booleans[20]. However, strong

booleans are not accessible to the user.

Definition 3 (OBE Formulas)

1. Every boolean expression is an OBE formula.
2. If f , f1, and f2 are OBE formulas, then so are the following:

a) (f)
b) ¬f
c) f1 ∧ f2

d) EXf
e) E[f1 U f2]
f) EGf

Additional OBE operators are derived from these as follows:

• f1 ∨ f2 = ¬(¬f1 ∧ ¬f2)
• f1 → f2 = ¬f1 ∨ f2

• f1 ↔ f2 = (f1 → f2) ∧ (f2 → f1)
• EFf = E[true U f ]
• AXf = ¬EX¬f
• A[f1 U f2] = ¬(E[¬f2 U (¬f1 ∧ ¬f2)] ∨ EG¬f2)
• AGf = ¬E[true U ¬f ]
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• AFf = A[true U f ]

Definition 4 (PSL Formulas)

1. Every FL formula is a PSL formula.
2. Every OBE formula is a PSL formula.

In Section B.4, we show additional operators which provide syntactic sug-
aring to the ones above.

B.3 Semantics

The semantics of PSL formulas are defined with respect to a model. A model
is a quintuple (S, S0, R, P, L), where S is a finite set of states, S0 ⊆ S is a
set of initial states, R ⊆ S × S is the transition relation, P is a non-empty
set of atomic propositions, and L is the valuation, a function L : S −→ 2P ,
mapping each state with a set of atomic propositions valid in that state.

A path π is a finite (or infinite) sequence of states π = (π0, π1, π2, · · · , πn)
(or π = (π0, π1, π2, · · ·)). A computation path π of a model M is a finite (or
infinite) path π such that for every i < n, R(πi, πi+1) and for no s, R(πn, s)
(or such that for every i, R(πi, πi+1)). Given a finite (or infinite) path π, we
define L̂, an extension of the valuation function L from states to paths as
follows: L̂(π) = L(π0)L(π1) . . . L(πn) (or L̂(π) = L(π0)L(π1) . . . ). Thus we
have a mapping from states in M to letters of 2P , and from finite (or infinite)
sequences of states in M to finite (or infinite) words over 2P .

B.3.1 Semantics of FL formulas

The semantics of FL formulas is interpreted over finite and infinite words over
Σ = 2P ∪ {
,⊥}. Let ϕ be an FL formula, w a word over Σ and M a model.
The notation w |= ϕ means that the FL formula ϕ holds over the word w.
The notation M |= ϕ means that for all π such that π is computation path of
M , L̂(π) |= ϕ.

We denote a letter from Σ by � and an empty, finite, or infinite word from
Σ by u, v, or w (possibly with subscripts). We denote the length of word v as
|v|. A finite non-empty word v = (�0�1�2 · · · �n) has length n + 1, the (finite)
empty word v = ε has length 0, and an infinite word has length ∞. We use
i, j, and k to denote non-negative integers. We denote the ith letter of v by
vi−1 (since counting of letters starts at zero). We denote by vi.. the suffix of v
starting at vi. That is, for every i < |v|, vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · ·.
We denote by vi..j the finite sequence of letters starting from vi and ending
in vj . That is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We use
�ω to denote an infinite-length word, each letter of which is �.

We use v to denote the word obtained by replacing every 
 with a ⊥ and
vice versa. We call v the dual of v.

From IEEE Std.1850-2005. Copyright 2005 IEEE. All rights reserved.*



194 Appendix B. Formal Syntax and Semantics

The semantics of FL formulas over words is defined inductively, using as the
base case the semantics of boolean expressions over letters in Σ. The semantics
of boolean expression is assumed to be given as a relation ⊆ Σ×B relating
letters in Σ with boolean expressions in B. If (�, b) ∈ we say that the letter

� satisfies the boolean expression b and denote it � b. We assume the two
special letters 
 and ⊥ behave as follows: for every boolean expression b, 
 b
and ⊥ /b. We assume that otherwise the boolean relation behaves in the
usual manner. In particular, that for every letter � ∈ 2P , atomic proposition
p ∈ P and boolean expressions b, b1, b2 ∈ B (i) � p iff p ∈ �, (ii) � ¬b iff

� /b, and (iii) � true and � /false. Finally, we assume that for every letter

� ∈ Σ, � b1 ∧ b2 iff � b1 and � b2.

Unclocked Semantics

Semantics of unclocked SEREs

Unclocked SEREs are defined over finite words over the alphabet Σ. The

notation v |≡ r, where r is a SERE and v a finite word means that v models
tightly r. The semantics of unclocked SEREs are defined as follows, where b
denotes a boolean expression, and r, r1, and r2 denote unclocked SEREs:

1. v |≡ {r} ⇐⇒ v |≡ r

2. v |≡ b ⇐⇒ |v| = 1 and v0 b

3. v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1, and v2 |≡ r2

4. v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and � s.t. v = v1�v2, v1� |≡ r1, and �v2 |≡ r2

5. v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

6. v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

7. v |≡ [∗0] ⇐⇒ v = ε

8. v |≡ r[∗] ⇐⇒ either v |≡ [∗0]

or ∃v1, v2 s.t. v1 �= ε, v = v1v2, v1 |≡ r and v2 |≡ r[∗]

Semantics of unclocked FL

We refer to a formula of FL with no @ operator as an unclocked formula. Let
v be a finite or infinite word, b be a boolean expression, r, r1, r2 unclocked
SEREs, and ϕ, ψ unclocked FL formulas. We use |= to define the semantics

of unclocked FL formulas: If v |= ϕ we say that v models (or satisfies) ϕ.

1. v |= (ϕ) ⇐⇒ v |= ϕ

2. v |=¬ϕ ⇐⇒ v |=/ ϕ

3. v |= ϕ ∧ ψ ⇐⇒ v |= ϕ and v |= ψ

4. v |= b! ⇐⇒ |v| > 0 and v0 b
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5. v |= b ⇐⇒ |v| = 0 or v0 b

6. v |= r → ϕ ⇐⇒ ∀j < |v| s.t. v0..j |≡ r, vj.. |= ϕ

7. v |= r! ⇐⇒ ∃j < |v| s.t. v0..j |≡ r

8. v |= r ⇐⇒ ∀j < |v|, v0..j
ω |= r!

9. v |= X! ϕ ⇐⇒ |v| > 1 and v1.. |= ϕ

10. v |= [ϕUψ] ⇐⇒ ∃k < |v| s.t. vk.. |= ψ, and ∀j < k, vj.. |= ϕ

11. v |= ϕ async abort b ⇐⇒ either v |= ϕ

or ∃j < |v| s.t. vj b and v0..j−1
ω |= ϕ

12. v |= ϕ sync abort b ⇐⇒ either v |= ϕ

or ∃j < |v| s.t. vj b and v0..j−1
ω |= ϕ

NOTES −

1. The semantics given here for the ltl operators and the async abort operator is
equivalent to the truncated semantics given in [18] which is interpreted over 2P

rather than over 2P ∪{	,⊥}. Using |=• for the semantics in [18], the following
proposition states the equivalence: Let w be a finite word over 2P , and let ϕ be
a formula of ltl

trunc. Then, as shown in [19], the three following equivalences
hold:

w |=•

−

ϕ ⇐⇒ w	ω |= ϕ

w |=• ϕ ⇐⇒ w |= ϕ

w |=•

+

ϕ ⇐⇒ w⊥ω |= ϕ

2. Using |=• as in the note 1 above, we use holds strongly for |=•

+

, holds for

|=• , and holds weakly for |=•

−

. The remaining terminology of Section 11.1 is
formally defined as follows:

• ϕ is pending on word w iff w |=•

−

ϕ and w |=•/ ϕ

• ϕ fails on word w iff w |=•

−

/ ϕ
3. There is a subtle difference between boolean negation and formula negation. For

instance, consider the formula ¬b. If ¬ is boolean negation, then ¬b holds on an
empty path. If ¬ is formula negation, then ¬b does not hold on an empty path.
Rather than introduce distinct operators for boolean and formula negation, we
instead adopt the convention that negation applied to a boolean expression is
boolean negation. This does not restrict expressivity, as formula negation of b
can be expressed as (¬b)!.

Clocked Semantics

We say that finite word v is a clock tick of c iff |v| > 0 and v|v|−1 c and for

every natural number i < |v| − 1, vi ¬c.
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Semantics of clocked SEREs

Clocked SEREs are defined over finite words from the alphabet Σ and a

boolean expression that serves as the clock context. The notation v |≡
c

r, where
r is a SERE, c is a boolean expression and v a finite word, means that v models
tightly r in context of clock c. The semantics of clocked SEREs are defined
as follows, where b, c, and c1 denote boolean expressions, and r, r1, and r2

denote clocked SEREs:

1. v |≡
c
{r} ⇐⇒ v |≡

c
r

2. v |≡
c

b ⇐⇒ v is a clock tick of c and v|v|−1 b
3. v |≡

c
r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡

c
r1, and v2 |≡

c
r2

4. v |≡
c

r1 : r2 ⇐⇒ ∃v1, v2, and � s.t. v = v1�v2, v1� |≡
c

r1, and �v2 |≡
c

r2

5. v |≡
c

r1 | r2 ⇐⇒ v |≡
c

r1 or v |≡
c

r2

6. v |≡
c

r1 && r2 ⇐⇒ v |≡
c

r1 and v |≡
c

r2

7. v |≡
c

[∗0] ⇐⇒ v = ε

8. v |≡
c

r[∗] ⇐⇒ either v |≡
c

[∗0]

or ∃v1, v2 s.t. v1 �= ε, v = v1v2, v1 |≡
c

r and v2 |≡
c

r[∗]

9. v |≡
c

r@c1 ⇐⇒ v |≡
c1 r

Semantics of clocked FL

The semantics of (clocked) FL formulas is defined with respect to finite/infinite
words over Σ and a boolean expression c which serves as the clock context.
Let v be a finite or infinite word, b, c, c1 boolean expressions, r, r1, r2 SEREs,

and ϕ, ψ FL formulas. We use |=
c

to define the semantics of FL formulas. If

v |=
c

ϕ we say that v models (or satisfies) ϕ in the context of clock c.

1. v |=
c

(ϕ) ⇐⇒ v |=
c

ϕ

2. v |=
c
¬ϕ ⇐⇒ v |=/

c
ϕ

3. v |=
c

ϕ ∧ ψ ⇐⇒ v |=
c

ϕ and v |=
c

ψ

4. v |=
c

b! ⇐⇒ ∃j < |v| s.t. v0..j is a clock tick of c and vj b

5. v |=
c

b ⇐⇒ ∀j < |v| s.t. v0..j is a clock tick of c, vj b

6. v |=
c

r → ϕ ⇐⇒ ∀j < |v| s.t. v0..j |≡
c

r, vj.. |=
c

ϕ

7. v |=
c

r! ⇐⇒ ∃j < |v| s.t. v0..j |≡
c

r

8. v |=
c

r ⇐⇒ ∀j < |v|, v0..j
ω |=
c

r!

9. v |=
c

X! f ⇐⇒ ∃j < k < |v| s.t. v0..j and vj+1..k are clock ticks of c and

vk.. |=
c

f

10. v |=
c

[ϕUψ] ⇐⇒ ∃k < |v| s.t. vk c, vk.. |=
c

ψ, and

∀j < k s.t. vj c, vj.. |=
c

ϕ
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11. v |=
c

ϕ@c1 ⇐⇒ v |=
c1 ϕ

12. v |=
c

ϕ async abort b ⇐⇒ either v |=
c

ϕ

or ∃j < |v| s.t. vj b and v0..j−1
ω |=
c

ϕ

13. v |=
c

ϕ sync abort b ⇐⇒ either v |=
c

ϕ or

or ∃j < |v| s.t. vj b ∧ c and v0..j−1
ω |=
c

ϕ

NOTE −

The clocked semantics for the ltl subset follows the clocks paper [20], with the ex-

ception that strength is applied at the boolean level rather than at the propositional

level.

B.3.2 Semantics of OBE formulas

The semantics of OBE formulas are defined over states in the model, rather
than finite or infinite words. Let f be an OBE formula, M = (S, S0, R, P, L)
a model and s ∈ S a state of the model. The notation M, s |= f means
that f holds in state s of model M . The notation M |= f is equivalent to
∀s ∈ S0 : M, s |= f . In other words, f is valid for every initial state of M .

The semantics of OBE formulas are defined inductively, using as the base
case the semantics of boolean expressions over letters in 2P . The semantics of
boolean expression is assumed to be given as a relation ⊆ 2P ×B relating
letters in 2P with boolean expressions in B. If (�, b) ∈ we say that the letter

� satisfies the boolean expression b and denote it � b. We assume that the
boolean relation behaves in the usual manner. In particular, that for every
letter � ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈ B
(i) � p iff p ∈ �, (ii) � ¬b iff � /b, (iii) � b1 ∧ b2 iff � b1 and � b2, and

(iv) � true and � /false.
The semantics of an OBE formula are those of standard CTL. The seman-

tics are defined as follows, where b denotes a boolean expression and f , f1,
and f2 denote OBE formulas:

1. M, s |= b ⇐⇒ L(s) b
2. M, s |= (f) ⇐⇒ M, s |= f
3. M, s |= ¬f ⇐⇒ M, s �|= f
4. M, s |= f1 ∧ f2 ⇐⇒ M, s |= f1 and M, s |= f2

5. M, s |= EX f ⇐⇒ there exists a computation path π of M such that
|π| > 1, π0 = s, and M, π1 |= f

6. M, s |= E[f1 U f2] ⇐⇒ there exists a computation path π of M such that
π0 = s and there exists k < |π| such that M, πk |= f2 and for every j such
that j < k: M, πj |= f1

7. M, s |= EG f ⇐⇒ there exists a computation path π of M such that
π0 = s and for every j such that 0 ≤ j < |π|: M, πj |= f
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B.4 Syntactic Sugaring

The remainder of the temporal layer is syntactic sugar. In other words, it does
not add expressive power, and every piece of syntactic sugar can be defined
in terms of the basic FL operators presented above. The syntactic sugar is
defined below.

NOTE −

The definitions given here do not necessarily represent the most efficient imple-

mentation. In some cases, there is an equivalent syntactic sugaring, or a direct

implementation, that is more efficient.

B.4.1 Additional SERE operators

Let i, j, k, and l be integer constants such that i ≥ 0, j ≥ i, k ≥ 1, l ≥ k. Then,
additional SERE operators can be viewed as abbreviations of the basic SERE
operators defined above, as follows, where b denotes a boolean expression, and
r denotes a SERE:

• r[+]
def
= r; r[∗]

• r[∗0]
def
= [∗0]

• r[∗k]
def
=

k times︷ ︸︸ ︷
r; r; ...; r

• r[∗i..j]
def
= r[∗i] | ... | r[∗j]

• r[∗i..]
def
= r[∗i]; r[∗]

• r[∗..i]
def
= r[∗0] | ... | r[∗i]

• r[∗..]
def
= r[∗0..]

• [+]
def
= true[+]

• [∗]
def
= true[∗]

• [∗i]
def
= true[∗i]

• [∗i..j]
def
= true[∗i..j]

• [∗i..]
def
= true[∗i..]

• [∗..i]
def
= true[∗..i]

• [∗..]
def
= true[∗..]

• b[= i]
def
= {¬b[∗]; b}[∗i];¬b[∗]

• b[= i..j]
def
= b[= i] | ... | b[= j]

• b[= i..]
def
= b[= i]; [∗]

• b[= ..i]
def
= b[= 0] | ... | b[= i]

• b[= ..]
def
= b[= 0..]

• b[→]
def
= ¬b[∗]; b

• b[→ k]
def
= {¬b[∗]; b}[∗k]
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• b[→ k..l]
def
= b[→ k] | ... | b[→ l]

• b[→ k..]
def
= b[→ k] | {b[→ k]; [∗]; b}

• b[→ ..k]
def
= b[→ 1] | ... | b[→ k]

• b[→ ..]
def
= b[→ 1..]

• r1 & r2
def
= {{r1} && {r2; true[∗]}} | {{r1; true[∗]} && {r2}}

• r1 within r2
def
= {[∗]; r1; [∗]} && {r2}

B.4.2 Additional FL operators

Let i, j, k and l be integers such that i ≥ 0, j ≥ i, k > 0 and l ≥ k. Then,
additional operators can be viewed as abbreviations of the basic operators
defined above, as follows, where b denotes a boolean expression, r, r1, and r2

denote SEREs, and ϕ, ϕ1, and ϕ2 denote FL formulas:

• ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2)

• ϕ1 → ϕ2
def
= ¬ϕ1 ∨ ϕ2

• ϕ1 ↔ ϕ2
def
= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

• Fϕ
def
= [true U ϕ]

• Gϕ
def
= ¬F¬ϕ

• Xϕ
def
= ¬X! ¬ϕ

• [ϕ1 W ϕ2]
def
= [ϕ1 U ϕ2] ∨ Gϕ1

• always ϕ
def
= G ϕ

• never ϕ
def
= G ¬ϕ

• next! ϕ
def
= X! ϕ

• next ϕ
def
= X ϕ

• eventually! ϕ
def
= Fϕ

• ϕ1 until! ϕ2
def
= [ϕ1 U ϕ2]

• ϕ1 until ϕ2
def
= [ϕ1 W ϕ2]

• ϕ1 until! ϕ2
def
= [ϕ1 U ϕ1 ∧ ϕ2]

• ϕ1 until ϕ2
def
= [ϕ1 W ϕ1 ∧ ϕ2]

• ϕ1 before! ϕ2
def
= [¬ϕ2 U ϕ1 ∧ ¬ϕ2]

• ϕ1 before ϕ2
def
= [¬ϕ2 W ϕ1 ∧ ¬ϕ2]

• ϕ1 before! ϕ2
def
= [¬ϕ2 U ϕ1]

• ϕ1 before ϕ2
def
= [¬ϕ2 W ϕ1]
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• X! [i]ϕ
def
=

i times︷ ︸︸ ︷
X! X! ...X! ϕ

• X[i]ϕ
def
=

i times︷ ︸︸ ︷
XX...X ϕ

• next![i] ϕ
def
= X! [i] ϕ

• next[i] ϕ
def
= X[i] ϕ

• next a![i..j]ϕ
def
= (X![i]ϕ) ∧ . . . ∧ (X![j]ϕ)

• next a[i..j]ϕ
def
= (X[i]ϕ) ∧ . . . ∧ (X[j]ϕ)

• next e![i..j]ϕ
def
= (X![i]ϕ) ∨ . . . ∨ (X![j]ϕ)

• next e[i..j]ϕ
def
= (X[i]ϕ) ∨ . . . ∨ (X[j]ϕ)

• next event!(b)(ϕ)
def
= [¬b U b ∧ ϕ]

• next event(b)(ϕ)
def
= [¬b W b ∧ ϕ]

• next event!(b)[k](ϕ)
def
=

next event!(b)

k−1 times︷ ︸︸ ︷
(X! next event!(b)...(X! next event!(b)(ϕ))...)

• next event(b)[k](ϕ)
def
=

next event(b)

k−1 times︷ ︸︸ ︷
(Xnext event(b)...(Xnext event(b)(ϕ))...)

• next event a!(b)[k..l](ϕ)
def
= next event!(b)[k](ϕ)∧...∧next event!(b)[l](ϕ)

• next event a(b)[k..l](ϕ)
def
= next event(b)[k](ϕ)∧ ...∧next event(b)[l](ϕ)

• next event e!(b)[k..l](ϕ)
def
= next event!(b)[k](ϕ)∨...∨next event!(b)[l](ϕ)

• next event e(b)[k..l](ϕ)
def
= next event(b)[k](ϕ)∨ ...∨next event(b)[l](ϕ)

• r(ϕ)
def
= r → ϕ

• r ⇒ ϕ
def
= {r; true} → ϕ

• ϕ abort b
def
= ϕ async abort b

B.4.3 Parameterized SEREs and formulas

Let r be a SERE, and l, m be integers. Let S be a set of constants, integers
or boolean values and p an identifier. The left-hand side of the following are
SEREs, equivalent to the SEREs on the right-hand side:

• for p in S : | r
def
= |

s∈S

{r[p ← s]}.

• for p〈l..m〉 in S : | r
def
= |

sl∈S

. . . |
sm∈S

{r[p〈l..m〉 ← 〈sl..sm〉]}

• for p in S : && r
def
= &&

s∈S
{r[p ← s]}.
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• for p〈l..m〉 in S : && r
def
= &&

sl∈S
. . . &&

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

• for p in S : & r
def
= &

s∈S
{r[p ← s]}.

• for & p〈l..m〉 in S : & r
def
= &

sl∈S
. . . &

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

where r[p ← s] is the SERE obtained from r by replacing every occurrence
of p by s and r[p〈l..m〉 ← 〈sl..sm〉] is the SERE obtained from r by replacing
every occurrence of pj with sj for all j such that l ≤ j ≤ m.

Let f be a PSL formula, and l, m integers. Let S be a set of constants,
integers or boolean values and p an identifier. The left-hand side of the fol-
lowing are PSL formulas equivalent to the PSL formulas on the right-hand
side:

• for p in S : ∨ f
def
=

∨
s∈S

f [p ← s]

• for p〈l..m〉 in S : ∨ f
def
=

∨
sl∈S

. . .
∨

sm∈S

f [p〈l..m〉 ← 〈sl..sm〉]

• for p in S : ∧ f
def
=

∧
s∈S

f [p ← s]

• for p〈l..m〉 in S : ∧ f
def
=

∧
sl∈S

. . .
∧

sm∈S

f [p〈l..m〉 ← 〈sl..sm〉]

• forall p in S : f
def
= for p in S : ∧ f

• forall p〈l..m〉 in S : f
def
= for p〈l..m〉 in S : ∧ f

where f [p ← s] is the formula obtained from f by replacing every occurrence
of p by s and f [p〈l..m〉 ← 〈sl..sm〉] is the formula obtained from f by replacing
every occurrence of pj with sj for all j such that l ≤ j ≤ m.

B.5 Rewriting rules for clocks

In Section B.3.1, we gave the semantics of clocked FL formulas directly. There
is an equivalent definition in terms of unclocked FL formulas, as follows: Start-
ing from the outermost clock, use the following rules to translate clocked
SEREs into unclocked SEREs, and clocked FL formulas into unclocked FL
formulas.

The rewrite rules for SEREs are:

1. Rc({r}) = Rc(r)

2. Rc(b) = ¬c[∗]; c ∧ b

3. Rc(r1 ; r2) = Rc(r1) ;Rc(r2)
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4. Rc(r1 : r2) = {Rc(r1)} : {Rc(r2)}

5. Rc(r1 | r2) = {Rc(r1)} | {Rc(r2)}

6. Rc(r1 && r2) = {Rc(r1)} && {Rc(r2)}

7. Rc([∗0]) = [∗0]

8. Rc(r[∗]) = {Rc(r)}[∗]

9. Rc(r@c1) = Rc1(r)

The rewrite rules for FL formulas are:

1. Fc((ϕ)) = (Fc(ϕ))

2. Fc(b!) = [¬c U (c ∧ b)]

3. Fc(b) = [¬c W (c ∧ b)]

4. Fc(¬ϕ) = ¬Fc(ϕ)

5. Fc(ϕ ∧ ψ) = (Fc(ϕ) ∧ Fc(ψ))

6. Fc(X!ϕ) = [¬c U (c ∧ X! [¬c U (c ∧ Fc(ϕ))])]

7. Fc(ϕ U ψ) = [(c → Fc(ϕ)) U (c ∧ Fc(ψ))]

8. Fc(r → ϕ) = Rc(r) → Fc(ϕ)

9. Fc(r!) = Rc(r)!

10. Fc(r) = Rc(r)

11. Fc(ϕ@c1) = Fc1(ϕ)

12. Fc(ϕ async abort b) = Fc(ϕ) async abort b

13. Fc(ϕ sync abort b) = Fc(ϕ) sync abort (b ∧ c)
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Operator Precedence

The table below gives the order of precedence of the operators as well as their
associativity. Here next* and next event* stand for all the variations of the
next and next event operators, and until* and before* stand for all the
variations of the until and before operators.

Operator Associativity⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐�

High HDL operators of the base flavor (e.g. && and ||)
according to their precedence in the base flavor

union left

@ left

[*] [+] [=] [->] left

within left

& && (SERE and’s) left

| (SERE or) left

: left

; left

abort async abort sync abort left

next* next event* eventually! right

until* before* right

|-> |=> right

-> <-> right

Low always never right



D

Quick Reference

D.1 Logical operators

D.1.1 Verilog, SystemVerilog and SystemC flavors

Here b is a Boolean expression, p, q properties, L a list of values, j, k integers,
and x an identifier; p(x) indicates a property p that uses identifier x.

Property Intuitive Meaning

b b holds at the current cycle

!p p does not hold at the current cycle

p && q both p and q hold at the current cycle

p || q either p or q holds at the current cycle

p -> q if p holds at the current cycle
then q holds at the current cycle as well

p <-> q shortcut for (p -> q) && (q -> p)

for x in boolean: && p(x) shortcut for p(‘true) && p(‘false)

for x in {L}: && p(x) shortcut for
p(l1) && p(l2) && ... && p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: && p(x) shortcut for
p(j) && p(j+1) && ... && p(k)

for x in boolean: || p(x) shortcut for p(‘true) || p(‘false)

for x in {L}: || p(x) shortcut for p(l1) || p(l2) ... || p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: || p(x) shortcut for p(j) || p(j+1) ... || p(k)
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D.1.2 Logical operators in the VHDL flavor

Here b is a Boolean expression, p, q properties, L a list of values, j, k integers,
and x an identifier; p(x) indicates a property p that uses identifier x.

Property Intuitive Meaning

b b holds at the current cycle

not p p does not hold at the current cycle

p and q both p and q hold at the current cycle

p or q either p or q holds at the current cycle

p -> q if p holds at the current cycle
then q holds at the current cycle as well

p <-> q shortcut for (p -> q) and (q -> p)

for x in boolean: and p(x) shortcut for p(‘true) and p(‘false)

for x in {L}: and p(x) shortcut for
p(l1) and p(l2) and ... and p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: and p(x) shortcut for
p(j) and p(j+1) and ... and p(k)

for x in boolean: or p(x) shortcut for p(‘true) or p(‘false)

for x in {L}: or p(x) shortcut for
p(l1) or p(l2) ... or p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: or p(x) shortcut for
p(j) or p(j+1) ... or p(k)
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D.1.3 Logical operators in the GDL flavor

Here b is a Boolean expression, p, q properties, L a list of values, j, k integers,
and x an identifier; p(x) indicates a property p that uses identifier x.

Property Intuitive Meaning

b b holds at the current cycle

!p p does not hold at the current cycle

p & q both p and q hold at the current cycle

p | q either p or q holds at the current cycle

p -> q if p holds at the current cycle
then q holds at the current cycle as well

p <-> q shortcut for (p -> q) & (q -> p)

for x in boolean: & p(x) shortcut for p(‘true) & p(‘false)

for x in {L}: & p(x) shortcut for
p(l1) & p(l2) & ... & p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: & p(x) shortcut for
p(j) & p(j+1) & ... & p(k)

for x in boolean: | p(x) shortcut for p(‘true) | p(‘false)

for x in {L}: | p(x) shortcut for p(l1) | p(l2) ... | p(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: | p(x) shortcut for p(j) | p(j+1) ... | p(k)
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D.2 LTL style

D.2.1 always, never and eventually!

Here p and q are properties.

Property Intuitive Meaning

always p p holds at the current cycle and at all future cycles

never p p does not hold at the current cycle,
nor does it hold at some future cycle

eventually! p p holds at the current cycle or at some future cycle

D.2.2 The next* operators

Here p is a property and m and n are integers such that m≥1 and n≥m.

Property Intuitive Meaning

next! p p holds in the next cycle,
and there must be such a cycle

next p p holds in the next cycle,
if there is such a cycle

next![n] p p holds on the nth next cycle,
and there must be such a cycle

next[n] p p holds on the nth next cycle,
if there is such a cycle

next e![m:n](p) p holds on one of the next mth through nth cycles,
and there must be such a cycle

next e[m:n](p) p holds on one of the next mth through nth cycles,
if there are at least n next cycles

next a![m:n](p) p holds on all of the next mth through nth cycles,
and there must be at least n next cycles

next a[m:n](p) p holds on all of the next mth through nth cycles,
however many exist
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D.2.3 The next event* operators

Here b is a Boolean expression, p is a property, and m and n are integers such
that m≥1 and n≥m.

Property Intuitive Meaning

next event!(b)(p) p holds at the next cycle b holds,
and there must be such a cycle

next event(b)(p) p holds at the next cycle b holds,
if there is such a cycle

next event(b)![n](p) p holds at the nth next cycle in which b holds,
and there must be such a cycle

next event(b)[n](p) p holds at the nth next cycle in which b holds,
if there is such a cycle

next event e!(b)[m:n](p) p holds at one of the next mth through nth

cycles in which b holds,
and there must be such a cycle

next event e(b)[m:n](p) p holds at one of the next mth through nth

cycles in which b holds,
if there are at least n such cycles

next event a!(b)[m:n](p) p holds at all of the next mth through nth

cycles in which b holds,
and there must be at least n such cycles

next event a(b)[m:n](p) p holds at all of the next mth through nth

cycles in which b holds,
however many exist
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D.2.4 The until* and before* operators

Here p and q are properties.

Property Intuitive Meaning

p until! q p holds until the cycle where q holds,
and q eventually holds

p until q p holds until the cycle where q holds;
if q never holds, p holds forever (until the end of the trace)

p until! q p holds until the cycle where q holds, inclusive,
and q eventually holds

p until q p holds until the cycle where q holds, inclusive;
if q never holds, p holds forever (until the end of the trace)

p before! q p holds strictly before the cycle where q holds,
and p eventually holds

p before q p holds strictly before the cycle where q holds;
if p never holds, then neither does q

p before! q p holds before or at the same cycle where q holds,
and p eventually holds

p before q p holds before or at the same cycle where q holds;
if p never holds, then neither does q

D.2.5 Abort operators

Here b is a Boolean expression and p is a property.

Property Intuitive Meaning

p async abort b either p holds or up until b holds, p does not fail;
b recognized asynchronously

p sync abort b either p holds or up until b holds, p does not fail;
b recognized with respect to current clock context

p abort b equivalent to p async abort b
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D.2.6 LTL operators

The Foundation Language is based on the temporal logic LTL. PSL supports
the LTL operators shown in the table below. Here p and q are properties.

LTL operator Synonym for

G p always p

F p eventually! p

X! p next! p

X p next p

p U q p until! q

p W q p until q
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D.3 SERE style

D.3.1 Consecutive repetition operators

Here b is a Boolean expression, s is a SERE, and i,j are integers such that
i ≥ 0 and j ≥ i.

SERE Intuitive Meaning

b[*i] i consecutive repetitions of b

b[*i:j] between i to j consecutive repetitions of b

b[*i:inf] at least i consecutive repetitions of b

b[*] zero or more consecutive repetitions of b

b[+] one or more consecutive repetitions of b

s[*i] i consecutive repetitions of s

s[*i:j] between i to j consecutive repetitions of s

s[*i:inf] at least i consecutive repetitions of s

s[*] zero or more consecutive repetitions of s

s[+] one or more consecutive repetitions of s

‘true skip one cycle

[*i] skip exactly i cycles

[*i:j] skip between i to j cycles

[*i:inf] skip at least i cycles

[*] skip zero or more cycles

[+] skip one or more cycles
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D.3.2 Non-consecutive and goto repetition operators.

Here b is a Boolean expression and i,j,m,n are integers such that i ≥ 0,
j ≥ i, m ≥ 1 and n ≥ m.

SERE Intuitive Meaning

b[=i] i not necessarily consecutive repetitions of b
equivalent to {!b[*]; b}[*i];!b[*]

b[=i:j] at least i and no more than j not necessarily consecutive
repetitions of b
equivalent to {!b[*]; b}[*i:j];!b[*]

b[=i:inf] at least i not necessarily consecutive repetitions of b
equivalent to {!b[*]; b}[*i:inf];!b[*]

b[->m] m not necessarily consecutive repetitions of b,
and b holds at the last cycle
equivalent to {!b[*]; b}[*m]

b[->m:n] at least m and no more than n not necessarily consecutive
repetitions of b,
and b holds at the last cycle
equivalent to {!b[*]; b}[*m:n]

b[->m:inf] at least m not necessarily consecutive repetitions of b,
and b holds at the last cycle
equivalent to {!b[*]; b}[*m:inf]

b[->] shortcut for b[->1]
equivalent to {!b[*]; b}
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D.3.3 Other SERE operators

Here s and t are SEREs, L is a list of values, j and k are integers, and x is
an identifier; s(x) indicates a SERE s that uses the identifier x.

SERE Intuitive Meaning

s ; t match of s followed by match of t,
t starts the cycle after s ends

s : t match of s followed by match of t,
t starts the same cycle that s ends

s | t match of s or match of t

s && t match of s and match of t,
lengths are the same

s & t match of s and match of t,
lengths may be different

s within t match of s within sequence of cycles
matching t,
shortcut for {[*] ; s ; [*]} && {t}

for x in boolean: | s(x) shortcut for s(‘true) | s(‘false)

for x in {L}: | s(x) shortcut for
s(l1) | s(l2) | ... | s(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: | s(x) shortcut for
s(j) | s(j+1) | ... | s(k)

for x in boolean: && s(x) shortcut for s(‘true) && s(‘false)

for x in {L}: && s(x) shortcut for
s(l1) && s(l2) && ... && s(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: && s(x) shortcut for
s(j) && s(j+1) && ... && s(k)

for x in boolean: & s(x) shortcut for s(‘true) & s(‘false)

for x in {L}: & s(x) shortcut for
s(l1) & s(l2) & ... & s(ln)

where l1, l2, etc. are items from list L

for x in {j:k}: & s(x) shortcut for
s(j) & s(j+1) & ... & s(k)
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D.3.4 Common SERE style properties

Here s and t are SEREs, and p is a property.

SERE Intuitive Meaning

never t there is never a match of t

s |=> t! if there is a match of s,
then there is a match of t on the suffix of the trace

• t starts the cycle after match of s ends
• every match of s must see t

• the match of t must reach its end

s |=> t if there is a match of s,
then there is a match of t on the suffix of the trace

• t starts the cycle after match of s ends
• every match of s must see t

• the match of t may “get stuck” in the middle,
for instance in a starred subsequence

s |-> t! if there is a match of s,
then there is a match of t on the suffix of the trace

• t starts the same cycle that match of s ends
• every match of s must see t

• the match of t must reach its end

s |-> t if there is a match of s,
then there is a match of t on the suffix of the trace

• t starts the same cycle that match of s ends
• every match of s must see t

• the match of t may “get stuck” in the middle,
for instance in a starred subsequence

s |=> p if there is a match of s,
then p holds on the suffix of the trace

• suffix starts the cycle after match of s ends
• every match of s must see p

s |-> p if there is a match of s,
then p holds on the suffix of the trace

• suffix starts the same cycle that match of s ends
• every match of s must see p
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D.4 Clocking

D.4.1 Clocking properties

Here p is a property and c is a Boolean expression.

Clock operator Intuitive Meaning

p@rose(c) filters out all but the cycles on which rose(c) holds

p@(posedge c) same as p@rose(c)

p@fell(c) filters out all but the cycles on which fell(c) holds

p@(negedge c) same as p@fell(c)

p@c filters out all but the cycles on which c holds

D.4.2 Clocking SEREs

Here s is a SERE and c is a Boolean expression.

Clock operator Intuitive Meaning

s@rose(c) filters out all but the cycles on which rose(c) holds

s@(posedge c) same as s@rose(c)

s@fell(c) filters out all but the cycles on which fell(c) holds

s@(negedge c) same as s@fell(c)

s@c filters out all but the cycles on which c holds
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D.5 Boolean, modeling and verification layers

D.5.1 Built-in functions concerning time

Here A is of any type, n is a number, c is a clock expression, b is a bit vector
and s is a SERE.

Built-in Function Intuitive Meaning

prev(A) value of A at the previous cycle
with respect to its clock context

prev(A,n) value of A at the nth previous cycle
with respect to its clock context

prev(A,n,c) value of A at the nth previous cycle
with respect to clock context c

next(A) value of A at the next cycle
regardless of its clock context

stable(A) true iff value of A is the same as it was at previous cycle
with respect to its clock context

stable(A,c) true iff value of A is the same as it was at previous cycle
with respect to clock context c

rose(b) true iff value of b is 1 and was 0 at the previous cycle
with respect to its clock context

rose(b,c) true iff value of b is 1 and was 0 at the previous cycle
with respect to clock context c

fell(b) true iff value of b is 0 and was 1 at the previous cycle
with respect to its clock context

fell(b,c) true iff value of b is 0 and was 1 at the previous cycle
with respect to clock context c

ended(s) true iff s completes at the current cycle
with respect to its clock context

ended(s,c) true iff s completes at the current cycle
with respect to clock context c
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D.5.2 Other built-in functions and the union operator

Here A and B are of any type, n is a number, c is a clock expression, V is a bit
vector, and L is a list of values.

Built-in Function Intuitive Meaning

isunknown(V) true iff any bit of V has an unknown value

countones(V) number of bits in V that have the value 1

onehot(V) true iff V contains exactly one bit with the value 1

onehot0(V) true iff V contains at most one bit with the value 1

A union B nondeterministic choice between A and B

nondet({L}) nondeterministic choice of a value from list L

nondet vector(n,{L}) an array of length n whose elements are chosen
nondeterministically from list L
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D.5.3 Verification directives

Here p is a property, s is a SERE, b and c are Boolean expressions, msg is a
string, lname is an identifier and D is a directive.

Directive Brief Description

assert p verify that p holds

assert p report msg verify that p holds,
report msg if it does not

assume p constrain verification so that p holds

assume guarantee p constrain verification so that p holds,
verify that p holds in the driving block(s)

assume guarantee p constrain verification so that p holds,
report msg verify that p holds in the driving block(s),

report msg if it does not

restrict s constrain verification so that entire trace matches s

restrict guarantee s constrain verification so that entire trace matches s,
verify that s holds in the driving block(s)

restrict guarantee s constrain verification so that entire trace matches s,
report msg verify that s holds in the driving block(s),

report msg if it does not

cover s check that s was covered by the verification suite

cover s report msg check that s was covered by the verification suite,
report msg if it was

fairness b constrain verification so that b holds infinitely many
times

strong fairness b,c constrain verification so that either b holds finitely
many times or c holds infinitely many times

lname: D identify label lname with D,
and verify, constrain, etc. as per D
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D.5.4 Verification units

Here name is an identifier and mod is a module or module instance.

Construct Brief Description

vunit name {...} group directives and modeling code

vunit name(mod) {...} group directives and modeling code,
bind to module mod

vmode name {...} same as vunit name{...}, but
cannot contain assert directives

vmode name(mode) {...} same as vunit name(mod){...}, but
cannot contain assert directives

vprop name {...} same as vunit name{...}, but
may contain only assert directives

vprop name(mode) {...} same as vunit name(mod){...}, but
may contain only assert directives
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D.6 Some convenient constructs

D.6.1 Comments and Macros

Here x is an identifier, L is a statically computable list and |L| is the size of
the list L.

Macro Brief Description

// ... <eol> trailing comment
SystemC, SystemVerilog and Verilog flavors

-- ... <eol> trailing comment
VHDL and GDL flavors

/* ... */ block comment
SystemC, SystemVerilog, Verilog and GDL flavors

‘define, ‘ifdef compiler directives
Verilog and SystemVerilog flavors

#define, #ifdef compiler directives
VHDL, SystemC and GDL flavors

%for x in {L} do replicate the text |L| times, each time replace
... the occurrence of x with an item from L

%end all flavors

%if expr %then similar to the #if construct of the cpp preprocessor
... used when encapsulated by %for

%else all flavors
...

%end
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D.6.2 Named properties and SEREs

Here name is an identifier, type x,type y are formal parameter types,
param1,...,paramN are formal parameters and actual1,...,actualN are
actual parameters.

Syntax Brief
Description

property name(type x param1, param2; property
type y param3, ..., paramN) = declaration

property text;

name(actual1, actual2, actual3, ..., actualN); property
instantiation

sequence name(type x param1, param2; sequence
type y param3, ..., paramN) = declaration

sequence text;

name(actual1, actual2, actual3, ..., actualN); sequence
instantiation

Formal parameter types

The table below gives a description of the parameter types that can be used in the
declaration of a property or SERE.

Syntax Brief Description

boolean a Boolean Expression

bit a single bit

bitvector a vector composed of bits

numeric any expression interpretable as an integer in the underlying flavor

string a string

sequence a braced SERE, a clocked SERE, a repeated SERE
or an instantiation of a named SERE

property a PSL property
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D.6.3 The forall operator

Here x is an identifier, j and k are integers, and L a list of values; p(x)
indicates a property p that uses the identifier x.

Syntax Brief Description

forall x in boolean: p(x) shortcut for p(‘true) && p(‘false)

forall x in {L}: p(x) shortcut for

p(l1) && p(l2) && ... && p(ln)

where l1, l2, etc. are items from list L

forall x in {j:k}: p(x) shortcut for

p(j) && p(j+1) && ... && p(k)

NOTE: In replicated properties using forall, x can be a vector. In such a case, each
element of x is treated independently. For example, the property

forall x[0:7] in boolean:

always ((read && data[0:7]==x[0:7]) ->

next_event(write)(data[0:7]==x[0:7]))

is equivalent to the “and” of 256 properties, one for each possible value of x[0:7].
Similarly x can be a vector in parametrized properties and SEREs as well.
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Below we give a brief history of PSL. Our aim is not to give a complete
chronicle of the history of temporal logic, nor a full accounting of the history
of assertions in hardware design. Furthermore, we will not list each of the
many people who participated in one or more of the Accellera and IEEE
committees involved in the development of PSL – their names appear in the
Accellera and IEEE standards. Rather, our aim is to touch on the major
milestones in the development of the language, and the main personalities
and ideas that have influenced PSL from its beginnings as syntactic sugaring
of the temporal logic CTL, through the move to an LTL-based paradigm, and
concluding with the IEEE standardization in October 2005. For background,
we include a few words about the temporal logics CTL and LTL as well.

We have made every effort to refer to all the main relevant works, however
we may have missed something. If so, we apologize in advance for the omission
and would welcome any corrections and/or comments.

The temporal logics LTL and CTL

The linear time logic LTL was introduced as propositional temporal logic, or
PTL, by Amir Pnueli in 1977 [41], and the computation tree logic CTL was
first presented by Ed Clarke and Allen Emerson in 1981 [14]. For many years, a
debate as to the relative merits of each was conducted in the literature. Moshe
Vardi was one of the main players in that debate – see for instance [45]. One
of the main arguments is that LTL is easier to use, while CTL is easier to
model check.

In 1983, Pierre Wolper argued in [46] that LTL is not expressive enough:
the requirement “p holds on every even cycle” is not expressible in LTL (nor
is it expressible in CTL). In fact, LTL has the expressive power of star-free
regular expressions – see [21].
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Development of Sugar at IBM

PSL began its life as Sugar at the IBM Haifa Research Laboratory in the early
1990’s. Ilan Beer, Shoham Ben-David and Avner Landver developed Sugar as
a syntactic sugaring of CTL, with the intention of making the specification
process easier for users of IBM’s RuleBase model checker. For instance, the
next event operator dates to the early days of Sugar, and next event(b)(f)

was at that time defined as A[¬b W b∧f ]. The concept of vacuity, about which
much has been written since [8, 37, 9, 16, 42, 6, 28, 29, 44, 13], dates to these
early days.

Circa 1995, regular expressions were added to the logic [10] using the syn-
tax {r}(p), where r is a regular expression and p a Sugar property, in a man-
ner reminiscent of PDL [22]. Shortly thereafter, suffix implication – in which
both the left- and right-hand sides are regular expressions – was added [7],
including both weak and strong regular expressions [17]. Although the motiva-
tion was usability and not expressive power, Armoni et al. [5] showed that the
addition of regular expressions has the side effect of increasing the expressive
power to that of omega-regular expressions. As noted in [12], their proof, for
the temporal logic ForSpec, holds for PSL as well.

Originally conceived as a language for formal verification [15, 39], 1997
saw the first use of Sugar in simulation [1].

From Accellera onwards

The Accellera FVTC (Formal Verification Technical Committee) started life
in 1998 as the VFV (Verilog Formal Verification) committee of OVI (Open
Verilog International). When OVI and VI (VHDL International) merged into
Accellera in 2000, the charter of the committee was expanded to include VHDL
in addition to Verilog. Although the name includes the term “formal verifica-
tion”, a single specification language for both dynamic (simulation) and static
(formal) verification soon became the goal of the committee. The two of us
participated in the committee from close to its inception as representatives of
the candidate language Sugar.

Very important roles were played by Harry Foster and Erich Marschner,
chairman and co-chairman of the FVTC. Both Harry and Erich put in an enor-
mous amount of work behind the scenes driving the standardization process
– without them it would not have happened. In addition, Erich’s endless pa-
tience in hearing out the more vocal members of the committee, his care
to solicit the input of the more reticent members, and his documentation of
everyone’s opinion was greatly appreciated by all.

Leading figures from the academic roots of PSL, Ed Clarke, Allen Emerson
and Moshe Vardi, took part in the process, as did over 30 industrial repre-
sentatives, including both potential users of the language as well as EDA
vendors. From very early on, it was decided to choose one of a number of
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candidate languages as the base language to be modified and enhanced ac-
cording to requirements identified by the committee. In addition to Sugar,
three candidate languages were donated to Accellera for consideration: CBV
from Motorola [31], represented by John Havlicek and Hillel Miller, ForSpec
from Intel [5], represented by Roy Armoni, and Temporal e from Verisity [40],
represented by David Van Campenhout. The committee judged the candidate
languages on the basis of an extensive list of 70 requirements, and on the basis
of an example document containing 74 example industry properties, expressed
in each of the four languages.

The exact selection process was as follows: two candidate languages out
of the four were selected by vote, after which the committee identified de-
sired changes. The donors of the two selected languages (CBV and Sugar)
then modified their original proposal as per the requested changes. The final
vote, taken in April of 2002, chose Sugar (with 71.4% of the votes) to be the
Accellera specification language, renamed PSL.

In between the donation of Sugar in November of 2000 and its selection by
the FVTC in April of 2002, a huge amount of time was invested in conducting
the technical debate in the committee. The IBM team conducting the debate
consisted of the two of us as well as Shoham Ben-David. As a result of the
debate, and of the changes requested by the committee during the selection
process, the language underwent an evolutionary process during this time.

The most visible of the changes was the move from the branching-time
semantics of CTL to the linear-time semantics of LTL, as a result of the
very persuasive arguments of Moshe Vardi in favor of linear-time semantics.
The work of Monika Maidl [38] was instrumental in allowing the move, as
it showed that the vast majority of Sugar properties used in practice could
be syntactically transformed from CTL into LTL and vice versa. This meant
that while the move was deeply significant from a theoretical point of view,
there was little or no impact to the user from a practical point of view, for two
reasons. First, because the user’s view of the language did not change – the fact
that next event was now defined in LTL rather than CTL was transparent to
the user in the vast majority of cases (which could be ascertained on the basis
of a simple syntactic test). And second, because the same tools could be used
to check LTL-based Sugar as CTL-based Sugar, providing they passed the
same simple syntactic test. The simple subset of PSL, described in Chapter 9,
has its roots in Maidl’s common fragment (see also [11]).

Two other very visible additions to the language – support for multiple
clocks and the abort operator – are the result of requests by Intel, recalling
features of its ForSpec temporal logic [5]. Some other important additions
dating to this period include the flavor concept, the layered definition of the
language (the original definition of Sugar did not include the modeling and
verification layers), and the formal definition of finite semantics, augmenting
the infinite semantics previously defined. During some of this time, the IBM
team was supported by Mike Gordon, whose work on incorporating the formal
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semantics of PSL into HOL [25, 26, 27] uncovered some subtle bugs in the
formal semantics as originally written.

The first Accellera version of PSL (PSL 1.01) [2] was released in June 2003.
Accellera version 1.1 [3], released in June 2004, added a SystemVerilog flavor
to the original three flavors (Verilog, VHDL, and GDL). In addition, operator
precedence was overhauled and labels and report clauses for directives were
added. Accellera version 1.1 also corrected three anomalies present in version
1.01. While these anomalies had minimal influence on users of the language
(because they involved corner cases that tools could choose to ignore with
little or no impact on the user), it was important that they ultimately be
solved, because adherence to the standard is determined by adherence to the
formal semantics.

The first anomaly was that originally two kinds of clocks, strong and weak,
were defined, but the strength of the clock had only a minimal effect. A
solution that eliminated the need for two kinds of clocks was presented in [20],
and incorporated into the Accellera version 1.1 formal semantics.

The second anomaly was identified in [4], which showed that the complex-
ity of the abort operator as defined in Accellera version 1.01 was problem-
atical. A solution, based on the theory of truncated paths developed in [18],
incorporated the semantics suggested by [4] but used a simpler and more el-
egant notation. This solution was later modified to include SEREs [19], and
basic results on the resulting semantics (which were incorporated into the
Accellera version 1.1 formal semantics) were documented in [30].

The third anomaly concerned weak SEREs such as {a ; b[*] ; ‘false}
(where ‘false is an expression that does not hold at any cycle), that do not
match any sequence of cycles. In the formal semantics of Accellera version 1.01,
such a SERE, when used as a property, would not hold on any trace, whereas
the intuition and intention was that {a ; b[*] ; ‘false}, being weak, hold
on a sequence of cycles in which a is asserted on the first cycle and b on all
the rest. The solution was based on the framework developed in [18, 19], and
was incorporated into the Accellera version 1.1 formal semantics. However,
the solution creates a new anomaly, in that it treats the logical contradiction
‘false differently from the structural contradiction {a} && {a;a}. A possible
solution to this was proposed in [17], which also examines in depth the issue
of weak vs. strong temporal operators.

The first IEEE version (IEEE Std 1850-2005) [33] was released in October
2005. In addition to a number of clarifications on various topics, the main
changes for IEEE Std 1850-2005 were the addition of a fifth flavor (SystemC),
replacement of endpoints with the built-in function ended(), the addition
of variations on the abort operator, parameterized properties and SEREs,
and the introduction of the keyword hdltype to ease interaction with the
underlying HDL.
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Current status

Any attempt to list tools supporting PSL would quickly become out of date.
See http://www.haifa.il.ibm.com/projects/verification/sugar/tools.html for
such a list.
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!, 27, 41

->, 7, 22, 24, 38, 39, 131–142

:, 47

;, 47, 133, 134

@, 65–69, 71–81, 161–164, 166–169, 172

[*], 43

[+], 44

[->], 46, 149

[=], 44

$, 44

&& (SERE length-matching “and”), 52

& (SERE non-length-matching “and”),
52

|->, 36, 39, 56, 131, 132, 137

|=>, 36, 39, 56, 131, 134, 136, 140, 141

| (SERE “or”), 51

<->, 101

abort, 83, 89

asynchronous, 89

common errors with, 143

confusing with “or”, 145

confusing with until, 143

for properties whose outermost
operator is not an always, 86

placement of parentheses, 84

synchronous, 89

active-high, 2

active-low, 2

always, 6, 34

“and”

confusing with implication, 132

length-matching, 52

non-length-matching, 52

parameterized, 95, 96
assert, 106
assertion, 1, 19

high-level, 124
Java, 1, 19
low-level, 123
VHDL, 1, 19
vs. property, 19

assume, 106
assume guarantee, 107
assumption, 1, 19
async abort, 89
asynchronous abort, 89
asynchronous property

embedded in synchronous, 81

before, 14
before!, 32
before! , 32
before , 16
binding

vunit, 105
bit, 93
bitvector, 93
boolean, 93
Boolean expression

repeating, 43
used as clock, 68

Boolean layer, 2, 3, 103
built-in function, 103
ended(), 57, 156, 228
next(), 104, 117
nondet(), 117
nondet vector(), 117
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prev(), 104
countones(), 104
fell(), 104
isunknown(), 104
onehot(), 104
onehot0(), 104
rose(), 104
stable(), 104

bus interface, 128

clock, 65
context, 103
cycle, 65, 72
default, 20, 80
edge, 67
expression, 20, 103
inner, 81, 167
interleaved, 161
keyword, 80
multiple, 161
nested, 81
nesting, 167
not well-behaved, 172
operator, 66
outer, 81, 167
placement of, 74
using Boolean expression as, 68, 78
well-behaved, 161

clock, 80
comments, 91
common equivalences, 111, 113
compound SERE, 51
concatenation, 47, 133

confusing with implication, 133, 134
consecutive repetition, 43
const, 93
context

clock, 103
countones(), 104
cover, 107
cpp preprocessor, 97
CTL, 115
current cycle, 20, 24, 36, 131, 139
cycle

“eating”, 49
clock, 20, 65, 72
current, 20, 24, 36, 131, 139
PSL, 65
skipping, 44

cycle-based, 20, 65, 74, 78
trace, simplifying properties for, 78

default, 80
default clock, 20, 80
default vmode, 106
#define, 97
‘define, 97
delay, 49
design

edge-triggered, 66, 72, 161
glitch-free, 67, 76, 162
level-sensitive, 68, 71, 72, 161
multiply-clocked, 167
multiply-clocked, singly clocked

property in, 167
multiply-clocked, vs. multiply-clocked

property, 167
singly-clocked, 71, 164, 167
two-phased, 71

design signals
overriding, 119

directive, 1, 2, 106
duality of weak and strong operators,

114

edge
clock, 67

edge-triggered design, 66, 72, 161
ended(), 57, 156, 228
endpoints, 57, 228
equivalences

common, 111, 113
false, 157

event trigger, 68
event-based, 20, 65, 74
event-driven simulation, 74
eventually!, 17, 33

applying to a logical implication, 141
applying to a suffix implication, 142

expression
clock, 20, 103
regular, 35

“extraneous” assertions of signals, 150

F, 211
fails, 109
failure

reporting, 24
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fairness, 107
‘false, 3
false “equivalence”, 157
fell(), 67, 104
FIFO, 126
finite traces, 109
“first match” operator, 148
FL, see Foundation Language
flavor, 3, 91

flavor A, applying to design in flavor
B, 122

GDL, 3, 91, 97
SystemC, 3, 91, 97
SystemVerilog, 3, 91, 97
Verilog, 3, 67, 91, 97
VHDL, 3, 91, 97

%for, 97, 127
forall, 12, 94, 116
formal verification, 114
Foundation Language, 5, 20, 115
four levels of satisfaction, 109
four-valued logic, 103
function

built-in, 103
fusion, 47

G, 211
GDL flavor, 3, 91, 97
glitch, 74
glitch-free, 67

design, 76, 162
expressing in PSL, 76

goto repetition, 46, 149
granularity of time, 20, 73, 74

hdltype, 93, 228
high-level assertion, 124
holding

two degrees of, 109
holds but does not hold strongly, 109
holds strongly, 109

#if, 97
%if, 97
if-then expression, 7, 38, 131, 135
#ifdef, 97
‘ifdef, 97
implication

logical, 7, 22, 24, 38, 39

logical, applying eventually! to, 141
logical, common errors with, 131
logical, confusing with “and”, 132
logical, confusing with concatenation,

133
logical, confusing with suffix

implication, 131
logical, incorrect nesting of, 138
logical, negating, 137
logical, nesting of, 139
logical, using with never, 135
suffix, 36, 39, 56
suffix, applying eventually! to, 142
suffix, common errors with, 131
suffix, confusing with concatenation,

134
suffix, confusing with logical

implication, 131
suffix, incorrect nesting of, 138
suffix, negating, 137
suffix, nesting of, 139
suffix, non-overlapping, 38
suffix, overlapping, 36
suffix, placement of, 141
suffix, using with never, 136

in, 94
incorrect nesting of logical implications

and suffix implications, 138
inf, 44
inherit, 105
inheritance

vunit, 105
initial values, 162, 164
inner clock, 81, 167
instances

multiple, 21, 84
instantiation, 21, 84
interleaved clocks, 161
isunknown(), 104

Java, 1, 19

labels, 107
layer

Boolean, 2, 3, 103
modeling, 3, 105
modeling, example of use, 113, 127,

153, 155
temporal, 2, 3
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verification, 2, 3, 80, 105
length-matching “and”, 52
level-sensitive design, 68, 71, 72, 161
liveness, 119
logic

four-valued, 103
logical iff, 101
logical implication, 7, 22, 24, 38, 39

applying eventually! to, 141
common errors with, 131
confusing with “and”, 132
confusing with concatenation, 133
confusing with suffix implication, 131
incorrect nesting of, 138
negating, 137
nesting, 139
using with never, 135

low-level assertion, 123
LTL

style, 5, 35, 111, 113

macros, 97
modeling layer, 3, 105

example of use, 113, 127, 153, 155
modularity, 20, 21
multiple clocks, 161
multiply-clocked design, 167

singly-clocked property in, 167
vs. multiply-clocked property, 167

multiply-clocked property, 71, 164,
167–169

vs. multiply-clocked design, 167

named SERE, 91
named property, 91
negating implications, 137
negedge clk, 67
nesting

of clocks, 81, 167
of logical implications, 139
of suffix implications, 139

never, 6, 34
aborting, 86
applied to a SERE, 42
incorrectly aborting, 146
using with logical implication, 135
using with suffix implication, 136

next!, 29
next(), 104, 117

next, 7
next![n], 29
next[n], 8
next a![i:j], 30
next a[i:j], 10
next e![i:j], 30
next e[i:j], 10
next event!, 29
next event, 10
next event!(b)[n], 29
next event(b)[n], 11
next event a!(b)[i:j], 30
next event a(b)[i:j](f), 12
next event e!(b)[i:j], 30
next event e(b)[i:j](f), 13
non-length-matching “and”, 52
non-overlapping suffix implication, 38
nonconsecutive repetition, 44
nondet(), 117
nondet vector(), 117
nondeterministic choice, 116, 117

vs. random choice, 116
not holding

two degrees of, 109
numeric, 93

OBE, see Optional Branching Extension
one-to-one correspondence, 150
onehot(), 104
onehot0(), 104
operator precedence, 203
operators

strong, 27
temporal, 1
weak, 27

Optional Branching Extension, 5, 20,
115

“or”
confusing with abort, 145
parameterized, 95, 96

outer clock, 81, 167
overlap, 7, 10, 16, 22, 24, 40, 47, 49, 59
overlapping suffix implication, 36
overriding design signals, 119

parameterized SERE, 96
parameterized property, 95
parameterized “and”, 95, 96
parameterized “or”, 95, 96
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pending, 109
placement of suffix implication, 141
placement of the clock, 74
posedge clk, 67
preprocessor

cpp, 97
prev(), 104
property, 1, 19

as parameter, 91
asynchronous, embedded in synchro-

nous, 81
clocked, 20
multiply-clocked, 71, 164, 167–169
multiply-clocked, vs. multiply-clocked

design, 167
named, 91
parameterized, 95
replicated, 94, 127, 129
singly-clocked, 164, 167
singly-clocked in a multiply-clocked

design, 167
vs. assertion, 19

property, 93
PSL cycle, 65

race conditions, 67
random vs. nondeterministic choice, 116
regular expressions, 35
repetition

any number, 44
consecutive, 43
goto, 46, 149
non-zero, 44
nonconsecutive, 44

replicated property, 94, 127
replication, 129
report, 107
reporting a failure, 24
reset, 83
restrict, 107
restrict guarantee, 107
rose(), 66, 104
RuleBase, 3

safety, 119
sampling semantics, 73, 74
satisfaction

the four levels of, 109
scoping rules

vunit, 105, 118
sequence, 91, 93
SERE, 5, 35

“and”, 52
as parameter, 91
compound, 51
how not to use, 62
named, 91
“or”, 51
parameterized, 96
repeating, 44
strong, 41
style, 5, 35, 111
weak, 41

simple subset, 24, 36, 38, 101, 114, 138
simplifying properties

cycle-based trace, 78
non-cycle-based trace, 79

simulation
event-driven, 74

simulator
cycle-based, 20, 74
event-based, 20, 74

singly-clocked design, 71, 164, 167
singly-clocked property, 164, 167

in a multiply-clocked design, 167
stable(), 76, 104
state machine, 123
string, 93
strong and weak operators

duality of, 114
strong fairness, 107
strong operators, 27, 119

and liveness, 119
suffix implication, 36, 39, 56

applying eventually! to, 142
common errors with, 131
confusing with concatenation, 134
confusing with logical implication,

131
incorrect nesting of, 138
negating, 137
nesting, 139
non-overlapping, 38, 131
overlapping, 36, 132
placement of, 141
using with never, 136

sync abort, 89
synchronous abort, 89
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SystemC flavor, 3, 91, 97
SystemVerilog flavor, 3, 91, 97

temporal layer, 2, 3, 5
time

granularity of, 20, 73, 74
trace, 20
transparent latch, 69
‘true, 3
two-phased design, 71

U, 211
union, 116, 117
until!, 31
until, 13

confusing with abort, 143
until! , 31
until , 14

vacuity, 119
vacuous pass, 119
verification

formal, 114
verification directive, 2, 106
verification layer, 2, 3, 80, 105

verification units, 2
Verilog, 68, 93, 103
Verilog flavor, 3, 67, 91, 97
VHDL, 1, 19
VHDL flavor, 3, 91, 97
vmode

default, 106
vmode, 106
vprop, 106
vunit

binding, 105
inheritance, 105
scoping rules, 105, 118

W, 211
weak and strong operators

duality of, 114
weak operators, 27, 119

and safety, 119
well-behaved clocks, 161
within, 55

X, 211
X!, 211




