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convolution product (A.7.12) we have 

00 00 

f--;;h fa7ha + L Ma(· - tn) + L hnfa{- - rn) + 
n=l n=l 

00 00 

L I:>mfn8(. - (tn + rm» 
n=l m=l 

and so 

00 

(f--;;h)(s) !a (s)h"(s) + L fne-stnh,,(s) + 
n=1 

00 00 00 

Lhne-srn!a(s) + LLhmfne-(tn+rm)S 
n=l n=l m=l 

by Lemma A.6.5.c and the definition of the Laplace transform 

= i(s). h(s) for s E Ct-

• 
In our applications we shall consider the class of transfer functions given by 

.4({3) := {j I f E A({3)}. (A.7.19) 

Corollary A.7.48 .4({3) is a commutative Banach algebra with identity under pointwise 
addition and multiplication. 

Proof This follows from the properties of A(,B) and the Laplace transform as listed in 
Lemmas A.7.46 and A.7.47, respectively. • 

We quote two important properties of .4(,8). 

Theorem A.7.49 i E .4(,8) is invertible over .4(,8) if and only if 

inf li(s)1 > o. 
sEct 

Proof Hille and Phillips [129, theorem 4.18.6]. 

(A.7.20) 

• 
Since A(,8) is an integral domain with identity, we can define coprimeness as in Definition 

A.7.41. We note that there exist elements in its quotient algebra that do not admit coprime 
factorizations (Logemann [161] and Vidyasagar, Schneider, and Francis [251]). 

Theorem A.7.S0 (i, h) are coprime over .4(,8) if and only if 

(A.7.21) 

Proof Callier and Desoer [36], theorem 2.1. • 
We need the following facts about almost periodic functions from Corduneau [44] and 

Bohr [28]. 
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Definition A.7.S1 f is almost periodic on the vertical strip LB, y] = (s Eel fJ ::: 
Re(s) ::: y} if it is continuous there and for any 8 > 0 there corresponds a 8 (8) > 0 such 
that any interval of length 8(8) on the imaginary axis contains at least one point, J17, for 
which If (s + J 17) - f (s) I < 8 for any s in this strip. • 

It is easy to see that e-Sln is an almost periodic function on any vertical strip. In the next 
lemma, we shall show that this also holds for infinite sums of these terms. 

Lemma A.7.S2 Suppose that /(s) = I: fne-stn, where fn E C, tn E lR and tl = 0, tn > 0 
n=) 

OC A 

for n :::: 2 and L If"le- llln < 00 for a given real fJ. Then f(s) is holomorphic on ct and 
n=! 

bounded on C;. Furthermore, /(s) is an almost periodic function on any vertical strip 
[fJ, fJ + (t], J-L > O. 

Proof In Lemma A.7.47 we proved that /(s) is bounded on C;. We also proved that it is 
holomorphic on ct and continuous on the line s = fJ + JW, W E lR; thus it is continuous 
on the vertical strip [fJ, fJ + J-L] for J-L > O. 

The rest of the proof can be found in Corduneau [44] following theorems 3.l0 and 3.13. 
An alternative proof can be found in Bohr [28, appendix II]. • 

That these functions are uniformly continuous on any closed vertical strip [fJ + 8, y] 
follows from the following general lemma. 

Lemma A.7.S3 Consider a function g(s) that is holomorphic on the vertical open strip 
(a, b) and bounded on any closed vertical strip [aI, bd contained in (a, b). Then g(s) is 
uniformly continuous on the closed vertical strip [aI, bd. 

Proof Corduneau [44, theorem 3.7]. • 
00 

Next we examine the asymptotic behavior of the almost periodic function L fne-stn. 
n=l 

Notice that while e-S tends to zero as Re(s) ---+ 00, it does not tend to zero as Is I ---+ 00. 

Lemma A.7.S4 Suppose that /(s) = f fne-Sln, where fn E C, tn E lR and tl = 0, tn > 0 
n=l 

for n :::: 2 and I: Ifn le- Illn < 00 for a given real fJ. / satisfies 
n=l 

a. I/(s) - fll ---+ 0 as Re(s) ---+ 00 uniformly with respect to lm(s); 

b. sup 1/(s)1 ---+ 0 as P ---+ 00 if and only if /(s) = 0 on ct· 
sEICt-lsl",p 

Proof a. The following estimate holds 

I/(s) - fll ::: ~ Ifnle-Re(S)tn ::: [~lfnle-/ltn] e-(Re(S)-Il)lmin 

for Re(s) > fJ, where tmin is the infinum of tn, n :::: 2. This establishes a for the case that 
tmin is positive. For the more general case see Corduneau [44, theorem 3.20] or Bohr [28, 
p.106]. 

b. Let So be a element in ct. We know that given 8 > 0 there exists PI > 0 such 
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that 1/(s)1 < e for all s E {s E C; I lsi :::: pd. Without loss of generality, we may 

assume that Isol < PI. By Lemma A.7.S2, / is almost periodic on the vertical strip 
LB, pd and so by Definition A.7.S1 for e > 0, there exists a 8(e) > ° and a point 
1J E [3pI, 3PI + 8(e)] such that I/(sl + J1J) -/(sl)1 < e for all Sl in the vertical strip 

LB, pd. Since Sl + J1J E {s E C; I lsi:::: pd, we know that I/(sl + J1J)1 < e and 

consequently 1/(sl)1 < 2e holds for all Sl in this vertical strip [,8, pd. In particular, we 

conclude that 1/(so)1 < 2e. Since So E C; and e > ° are arbitrary, it follows that /(s) = ° 
ooq. • 

Finally, we state an important result on the asymptotic behavior of elements in .4(,8). 

Corollary A.7.55 The function / E .4(,8) has the limit zero as s goes to infinity in C;, 
i.e., sup 1/(s)1 --+ ° as p --+ 00 ifand only if /0 = laO. 

sECt,lsl2:p 

Proof This follows from Lemma A.7.S4 and Property A.6.2.g. • 
The subclass of .4(0) consisting of Laplace transforms of functions in LI (0, (0) has 

another special property. 

Theorem A.7.56 The subset of strictly proper, stable, rational transfer functions is dense 
in the class of Laplace transforms of functions in L 1(0, (0) in the H 00 -norm. 

Proof For hELl (0, (0), by Property A.6.2 its Laplace transform h in .4(0) is holomorphic 

on ct and continuous on ct. Furthermore, we have that limlsl--+oo Ih(s)1 = ° for s E ct. 
We reduce this to an equivalent problem on the unit disc, ]j)) := {z E C I Izl < l} by 

introducing the bilinear transformation (J: ll} --+ ct defined by 

l+z 
(J(z):= -­

I - z 
for z E ll}\{l}. (A.7.22) 

It is easy to see that (J(]j))) = ct, and it maps the unit circle excluding the point I on the 

imaginary axis. Thus /d(z) := h((J(z» is holomorphic on ]j)) and continuous on ll}\{l}. 
Furthermore, it is easy to see that 

lim fd(z) = lim h(s) = 0. 
ZEjj),Z--+ I sECt, Isl--+oo 

Hence fd is continuous on the unit circle. 
It is known from Theorem A.I.12 that the subset of polynomials with complex coeffi­

cients is dense in the H oo-norm in the class of complex functions that are holomorphic on 
]j)) and continuous on ll}. Hence for every e > ° there exists a polynomial Q, such that 

sup Ifd(z) - Q,(z)1 < e. 
ZEJI]l 

Since /d(l) = 0, there holds IQ,(l)1 < e. Defining Pe := Q, - Qe(l), gives PEel) = ° 
and 

sup l/d(z) - Pe(z)1 < 2e. 
ZEJI]l 
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Now the bilinear transformation (A.7.22) shows that Hoc is isometrically isomorphic to 
Heo(l[lJ), the space of holomorphic complex functions on [[)) bounded on [[)). Thus we see 
that 

sup Ih(s) - P,(O-I(s»1 = sup l!d(z) - P,(z)1 < 28. 
sEiCt ZEIIli 

The function P, (0 -I (.» is a stable rational function in Cri. Furthermore, we have that 

lim p,(O-I(S» = lim P,(z) = 0, 
sEct ,Isr~oo '::EiO,.;:-+ I 

and so p,(O-1 0) is strictly proper. • 
In fact, the functions in Hoc that are approximable by rationals in the Hoc-norm are 

exactly those that are continuous on the extended imaginary axis. The proof is similar to 
the analogous result in Lemma A.6.11 on approximation in the Leo-norm, except that one 
appeals to Theorem A.1.12 instead of the Weierstrass Theorem. For example, e-S is not 
approximable by rationals, but e-'I is. 

s+ 
The proof of Theorem A.7.56 is based on Nett [189]. More powerful approximation 

results can be found in Glover, Curtain, and Partington [112], Glover, Lam, and Partington 
[113], [114], [lIS], Ghu, Khargonekar, and Lee [106], Partington et al. [200], Zwart et al. 
[276] and Makila [174]. 

Further properties of these convolution algebras can be found in Hille and Phillips [129, 
sections 4.16-4.18], Callier and Desoer [36]-[38], and Logemann [161] and [162]. 
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Notation 

Symbol Meaning Page 

* h * g, convolution product of hand g 637 
h, Fourier transform of h 637 

t ptcn := P(-S)* 415 
0 u 0 v, concatenation of u and v at T 175 

r 
Ell ZI Ell Z2, direct sum of ZI and Z2 578 
> QI > Q2, operator QI larger than Q2 606 
:::: Ql :::: Q2, operator QI larger than or equal to Q2 606 

h, Laplace transform of h 635 
(., .) (u, v), inner product of u and v 576 
11·11 IIzll, norm of z 572 
V closure of the set V 574 
1. V .L, orthogonal complement of V 

x 1. y, {} (x, y) = 0 578 
X', dual space or dual operator of X 589,594 

" X", second dual of X 592 
Q*, adjoint operator of Q 601 

4 V 4 X, continuous and dense injection 585 

A(,8) convolution algebra 661 
A(,8) set of Laplace transforms of A(,8) 665 
A-UJ) union of A(,8I) over,81 < ,8 338 
Aoo(,8) set of functions in A_ (,8) that are 

bounded away from zero at infinity in ret 338 
Br controllability map on [0, T 1 143 



686 Notation 

Symbol Meaning Page 

BOO controllability map on [0, (0) 159 

BU]) _"L (,BHAoc (,B) ]~I 340 
IC set of complex numbers 
iC(s) class of rational functions 653 
ICp (s) class of proper rational functions 653 
IC+ 
~ 

all complex numbers with real part larger than ,B 636 
IC+ 

fJ all complex numbers with real part larger than or 
equal to ,B 635 

C-fJ ali complex numbers with real part less than ,B 229 
C[O, I] class of continuous functions from 

[0, I] to IC 574 
C([a, b]; X) class of continuous functions from 

[a,b]toX 586 
CI([O, r]; Z) class of continuously differentiable 

functions from [0, r] to Z 101 
eT observability map on [0, r] 154 
ex observability map on [0, (0) 159 
D(T) domain of T 582 
II} unit disc 450 
:FdP, Q) lower linear fractional transformation 430 
:Fu(P, Q) upper linear fractional transformation 430 
HG Hankel operator associated with symbol G 387 
Hoc Hardy space of bounded holomorphic 

functions on ICli with values in IC 643 
H ae (II}) Hardy space of bounded holomorphic 

function on II} with values in IC 450 
Hae(lI}; ICkxm) Hardy space of bounded holomorphic 

function on II} with values in ICkxm 450 
H",,(X) Hardy space of bounded holomorphic 

functions on ICli with values in X 643 
H~(,B) subset of Hoc 377 
Hoc[Hoc]~1 quotient field of Hex; 654 
H2 Hardy space of square integrable 

functions on ICli with values in IC 643 
H2 (II}) Hardy space of square intergrable 

functions on II} with values in IC 450 
H 2 (1I}; em) Hardy space of square intergrable 

functions on II} with values in ICm 450 
H 2(Z) Hardy space of square integrable 

functions on ICli with values in Z 643 
I, approximate identity 534 
J (zo; to, t" u) cost functional on the interval [to, te ] 269 
kerT kernel of T 583 
LT 

B controllability gramian of L (A, B, -) on [0, r] 144 
LT c observability gramian of L(A, -, C) on [0, r] 154 



Notation 687 

Symbol Meaning Page 

L(Q; Z) class of Lebesgue measurable functions 
from Q to Z 626 

Loo(a, b) class of bounded measurable functions 
from [a, b] to IC 573 

Loo(Q; Z) class of bounded measurable functions 
from Q to Z 626 

Loo«(JJ[]); ICkxm) class of bounded measurable functions 
from (JJ[]) to ICkxm 450 

Lp(a, b) class of Lebesgue measurable complex-

valued functions with I: If(t)IPdt < 00 573 
Lp(Q; Z) class of Lebesgue measurable Z-valued 

functions with In If(t)IPdt < 00 626 
L 2«-JOO, Joo); Z) Lp(Q; Z) with p = 2 and Q= (-Joo, Joo) 639 
L 2 «(JJ[]) Lp(Q; Z) with p = 2, Q = (JJ[]) and Z= IC 450 
L 2«(JJ[]); em) Lp(Q; Z) with p = 2, Q = (JJ[]) and Z= ICm 450 
L~C([O, 00); U) class of functions which are in 

L 2«a, b); U) for all a, bE [0,00) 175 
L(X) bounded linear operators from X to X 584 
L(X, y) bounded linear operators from X to Y 584 
£p complex-valued sequences with 

00 

L IxnlP < 00 572 
n=l 

£00 bounded complex-values sequences 573 
MA class of matrices with elements in A 656 
MA(,8) class of matrices with elements in A(,8) 349 
MA_(,8) class of matrices with elements in A_ (,8) 349 
M8(,8) class of matrices with elements in 8(,8) 349 
M 2([ -hp, 0]; IC") IC" Ef7 L 2« -hp, 0); IC") 56 
N nonobservable subspace 157 
N set of positive integers 
P(Q; L(Z\, Z2» class of weakly measurable 

functions from Q to L(Z\, Z2) 626 
Pp(Q; L(ZI, Z2» functions in P(Q; L(ZI, Z2) with 

In IIF(t)IIPdt < 00 626 
Poo(Q; L(ZI, Z2» class of bounded weakly measurable 

functions from Q to L(ZI, Z2) 626 
P oo « - Joo,Joo);L(U, Y» class of weakly measurable bounded 

functions from (-Joo, Joo) to L(U, Y) 639 
lR. the set of real numbers 
R reachable subspace 157 
R(,8) ,8-stable, proper, rational functions 653 
Rr (,8) ,8-stable, real, proper, rational functions 653 
Roo (,8) ,8-stable, biproper, rational functions 653 
R'oo (,8) ,8-stable, real, biproper, rational functions 653 



688 Notation 

Symbol Meaning Page 

R(s) real, rational functions 653 
Rp (s) real, proper, rational functions 653 
ran T range of the operator T 582 
ru(T) spectral radius of T 614 
urnin (-; Zo, to, t,) optimal input trajectory 272 
yrnin (.; Zo, to, t,) optimal output trajectory 272 
Z set of integers 
zmin (.; Zo, to, t,) optimal state trajectory 272 

alDJ unit circle 450 
XT(G, G",) directed gap 558 
~(A) characteristic function of delay system 58 
r h Hankel operator associated with 

impulse response h 396 
peA) resolvent set of A 608 
p",,(A) component of peA) that contains an 

interval [r, 00), r E R 70 
E(A,B,C,D) state linear system 141 
E(A,B,C) state linear system with D = 0 141 
E(A, B,-) state linear system with C undefined 141 
E(A, -, C) state linear system with B undefined 141 
Ed(A, B, C, D) discrete-time state linear system 211 
a(A) spectrum of A 610 
ac(A) continuous spectrum of A 610 
ap(A) point spectrum of A 610 
areA) residual spectrum of A 610 

at(A) a(A) n ct 229 
a~-(A) a(A) n C:l 229 



Index 

A 
abstract boundary control problems, 122 
abstract differential equation, 101 
abstract evolution equation, 10 1 
abstract linear system, 176 
addition, 571 
additive perturbation 

weighted, 551 
additive uncertainty, 470 
adjoint operator, 601, 603 
admissible perturbation, see B-admissible 

perturbation 
A-invariant, 69 
algebra, 651 
algebraic inverse, 583 
algebraic Riccati equation, 293 

discrete-time, 331 
equivalent form, 306 
for :E(A, B, C, D), 302 
relation with dissipative inequality, 

319 
relation with Hamiltonian, 319 
relation with spectral factorization, 

319 
unbounded solution, 307 

almost periodic, 666 
analytic, 565 

antistable, 6, 387 
approximate identity, 534, 560 
approximately controllable, 144, 157 

discrete-time, 212 
for boundary control system, 201 
for delay system, 171 
for Riesz-spectral system, 164 
for self-adjoint generator, 162 

approximately observable, 154, 157 
discrete-time, 212 
for delay system, 167 
for Riesz-spectral system, 164 
for self-adjoint generator, 163 

approximation 
in Hoo, 667 
in Loo, 640 
of holomorphic functions, 568 
truncated balanced, 446 

approximation error, 246 
ARE, see algebraic Riccati equation 
associative, 649 
associative property, 571 

B 
balanced realization, 8 
Banach algebra, 651 
Banach space, 575 



690 Index 

Banach Steinhaus theorem, 586 
basis, 579 
beam equation, 90 

Co-semigroup,9l 
boundary control, 138, 207 
Riesz-spectral generator, 91 

,B-exponentially detectable, 227 
,B-exponentially stabilizable, 227 
,B-exponentially stable, 215 
,B-input-output stable, 538 

of Hoc-configuration, 466 
of feedback system, 458 
of transfer function, 457 

,B-stabilizing controller, 458 
Bezout identity, 344, 352, 655, 660 
biorthogonal, 38 
biorthogonal sequence, 38 
biproper, 653 
Bochner integrals, 622 
boundary control system, 122,201-210 

approximately controllable, 201 
exponentially detectable, 264 
exponentially stabilizable, 263 
spectrum determined growth assump-

tion, 263 
transfer function, 207 

boundary operator, 122 
bounded 

operator, 583 
set, 574 

bounded algebraic inverse, 609 
bounded away from zero at infinity in 

Ct,338 
bounded inverse, 609 
bounded linear functional, 588 
bounded linear operator, 583 

C 
Callier-Desoer class, 340 

invertibility, 348 
cascade connection, 336 
Cauchy sequence, 574 
Cauchy's residue theorem, 568 
Cauchy's theorem, 567, 635 
Cauchy-Riemann equations, 380 
Cauchy-Schwarz inequality, 576 
central controller, 491, 527 
circle criterion, 254 
classical solution, 80, 121 

on [0, 00), 101 
on [0, r], 101 

closed 
operator, 595 
set, 574 

closed curve, 566 
closed graph theorem, 597 
closed-loop system, 246 
closure, 574 
co-inner, 358, 382 
coercive, 606 
colocated, 385 
commutative, 649, 651 
commutative property, 571 
commutative ring, 649 
compact 

operator, 587 
set, 574 

compact, normal resolvent, 619 
compensator, 246 

finite-dimensional, see rational con-
troller 

complete, 575 
completion, 575 
complex vector space, 571 
concatenation, 175 
continuous, 586 

strongly, 586 
uniformly, 586 

continuous at xo, 583 
continuous embedding, 585 
continuous on D(F), 583 
continuous spectrum, 610 
continuously initially observable, see ex­

actly observable 
contour, 566 

closed,566 
positively oriented, 567 
simple, 566 

contraction mapping theorem, 581 
contraction semigroup, 32 
control sensitivity function, 553 
controllability, 143 
controllability grarnian, 6, 144 

discrete-time, 212 
extended, 159 

controllability map, 5, 143, 176 
discrete-time, 211 
extended, 159 



controllable, 5, 143 
approximately, 144 
exactly, 144 
exactly null, 153 

controller 
rational, see rational controller 

convergence 
strong, 586 
uniform, 585 
weak,593 

converges, 574 
convolution algebra, 662 
convolution product, 637, 662 
coprime, 655, 660 

left,660 
left-

over MA_UJ), 352 
over A(,8), 665 
over A_ (,8), 344 
right, 660 
right-

over MA_(,8), 352 
coprime factorization 

doubly 
of L(A, B, C, D), 370 
over MA_ (fJ), 357 

left-
of L(A, B, C, D), 368 
over MA-(fJ), 353 

normalized doubly 
over MA_(O), 358 

normalized left-
of e-asGo(s), 381 
over MA_(O), 358 

normalized right-
of L(A, B, C, D), 371 
of e-asGo(s), 380 
over MA_ (0), 358 

right-
of L(A, B, C, D), 366 
over MA_ (fJ), 353 

cost functional, 269, 329 
costate, 318 
curve 

closed,566 
rectifiable, 566 
simple, 566 

Co-semigroup, 15 
bounded generator, 16 

contraction, 32 
dual, 37 

Index 691 

growth bound, 18 
holomorphic, 88 
infinitesimal generator, 20 
measurable, 622 
perturbed, 11 0, 1 I 9 

D 
decay rate, 215 
delay equation/system, 53, 96, 115, 141 

Co-semigroup, 56 
fJ-exponentially detectable, 242 
fJ-exponentially stabilizable, 242 
fJ-exponentially stable, 224 
approximately controllable, 171 
approximately observable, 167 
infinitesimal generator, 60 

spectrum, 60 
inhomogeneous, 107, 139 
partial fraction expansion, 199 
robustly stabilizing controller, 548 

additive perturbation, 498 
additive uncertainty, 484 
coprime-factor uncertainty, 531 

spectrum determined growth assump­
tion, 223 

transfer function, 182 
delay system, see delay equation/system 
dense, 574 
dense injection, 585 
derivative, 630 

Frechet, 629 
detectable, see exponentially detectable 

fJ -exponentially , 227 
exponential, 9 
exponentially, 227 

differentiable, 630 
strongly, 633 
uniformly, 633 
weakly, 633 

differential, see Frechet differential 
differential Riccati equation, 281 

equivalent forms, 304 
dimension, 572 
directed gap, 558 
discrete-time 

Hardy space, 450 
discrete-time system 



692 Index 

algebraic Riccati equation, 331 
approximately controllable, 212 
approximately observable, 212 
controllability gramian, 212 
controllability map, 211 
Hankel operator, 454--455 
observability gramian, 212 
observability map, 212 
optimal control, 329 
stability, 264 
stabilizability, 266 

dissipative inequality, 319 
dissipative operators, 99 
distributive, 649 
divisors of zero, 649 
domain 

complex, 565 
of an operator, 582 

doubly coprime factorization, 660 
of ~(A, B, C, D), 370 
over M ... L ({J), 357 

dual operator, 594, 598 
dual semigroup, 37 
dual space, 589 
duality pairing, 600 

E 
eigenfunction, see eigenvector 
eigenvalue, 610 

isolated, 610 
multiplicity, 611 
order, 610 

eigenvector, 610 
generalized, 611 

entire, 565 
E-admissible perturbations, 473 
E-admissible additive perturbation, 473, 

492 
E-admissible left-coprime-factor pertur­

bation, 473 
E-admissible multiplicative perturbation, 

473 
equivalent norms, 573 
exactly controllable, 144 
exactly null controllable, 153 
exactly observable, 154 
exponentially detectable, 9, 227 
exponentially stabilizable, 9, 227 
exponentially stable, 6, 159,215 

extended controllability gramian, 159, 160 
extended controllability map, 159 
extendedobservability gramian, 159, 160 
extended observability map, 159 

F 
factorization problem, 415 
feedback, 227 
feedback operator, 227 
field,650 
finite rank, 582 
finite-dimensional compensator, see ra-

tional controller 
fixed point, 581 
Fourier coefficients, 579 
Fourier expansion, 579 
Fourier transform, 637 

inverse, 642 
fractional representation theory, 5 
frequency-domain Hankel operator, 401 

discrete-time, 454 
of ~(A, B, C), 401 

Frechet derivative, 629 
Frechet differentiable at x, 629 
Frechet differential at x, 629 
Fubini's theorem, 628 
functional, 581 

gap, directed, 558 
gap metric, 558 

G 

generalized eigenvectors, 611 
generator of mild evolution operator, 118 
graph,595 
graph norm, 87 
greatest common divisor, 654 
greatest common left divisor, 657 
greatest common right divisor, 656 
Gronwall's lemma, 639 
group, 649 
growth bound, 18 

H 
Hahn-Banach theorem, 589 
Hamiltonian operator, 318 
Hankel matrix, 453 
Hankel norm, 401 
Hankel operator, 7, 387,440,445 

adjoint, 437 
discrete-time, 453 



frequency-domain, 454 
time-domain, 454 

frequency-domain, 387 
continuous time, 401 
discrete-time, 454 

norm, 401 
of e-sT Go(s), 402 
of e-s , 395 
singular values, 401 
time-domain, 396 

continuous time, 401 
discrete-time, 454 

Hankel operator associated with h, 396 
Hankel operator with symbol G, 387 
Hankel singular value 

of e-sT Go(s), 403 
Hankel singular values, 7, 401 

of L(A, B, C), 401 
Hardy space, 643 

discrete-time, 450 
heat equation, 13, 131 

Co-semigroup, 45 
,B-exponentialIy detectable, 255 
,B-exponentiaIIy stabilizable, 255 
as state linear system, 142 
boundary control, 121, 125, 133, 

205,208,264 
control, 136 
controllability, 152 
coprime factorization, 369 
Dirichlet boundary conditions, 81 
in CalIier-Desoer class, 341, 343 
inhomogeneous, 106 
optimal control 

finite time, 284 
infinite time, 299 

robustly stabilizing controlIer 
additive perturbation, 496 
coprime-factor uncertainty, 529 

stabilizing compensator, 249 
transfer function, 184, 186, 196 
zero, 259 

high gain feedback, 258 
Hilbert space, 576 
Hilbert's matrix, 453 
Hilbert-Schmidt operator, 439 
HilIe-Yosida theorem, 26 
Hoo-optimization problem, 478 
Holder inequality, 591 

Index 693 

holomorphic, 565, 634 
holomorphic continuation, 566 
holomorphic semigroup, 88 
homotopic, 570 
homotopic invariant, 570 

ideal, 649 
identity, 649 

I 

impulse response, 178 
Riesz-spectral system, 183 

impulse response function, 7 
ind(g),570 
indented imaginary axis, 569 
index, see Nyquist index 
induced norm, 576 
infinite-dimensional, 572 
infinitesimal generator, 20 
initialIy observable, see approximately 

observable 
injective, 583 
inner, 358, 382 

co-,358 
inner product, 576 
inner product space, 576 
input space, 176 
input-output map, 7, 175, 176 
input-output stable, 6 

of Hoo-configuration, 466 
of feedback system, 458 
of transfer function, 457 

inputs, 141 
instability due to delay, 258 
integral 

Bochner, 622 
complex, 567 
Lebesgue, 622 
Pettis, 624 

integral domain, 649 
integral operators, 588 
invariant 

A,69 
T(l),69 
shift, 648 

inverse, 571, 649 
algebraic, 583 
bounded, 609 
in Banach algebra, 651 
of transfer function, 368 
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inverse element, 649 
inverse Fourier transform, 642 
invertible, 583 

over A(l3), 665 
over A_(lJ), 338 
over 13(13), 348 
over MA_UJ), 350 
over MB({3), 350 

irreducible factors, 345 
isolated eigenvalue, 610 
isometrically isomorphic, 573 
isomorphic 

isometrically, 573 
topologically, 573 

J 
J -spectral factorization, 416 

ker, 583 
kernel,583 

K 

L 
Laplace transform, 635 

two-sided, 637 
Laplace-transformable functions, 635 
Laurent series, 568 
Lebesgue integrable, 622 
Lebesgue integral, 622 
Lebesgue-dominated convergence theo-

rem, 628 
left coprimeness, 657 
left divisors, 657 
left multiple, 656 
left-coprime, 660 
left-coprime factorization 

of ~(A, B, C, D), 368 
over MA_ ({3), 353 
over MR, 657 

left-coprime over MA_ ({3), 352 
left-coprime-factor uncertainty, 471 
Legendre polynomials, 580 
limit at infinity, 351 

limit at infinity in C;, 351 
linear combination, 572 
linear fractional transformation 

lower, 430 
upper, 430 

linear fractional transformations, 430 
linear functional, 588 

bounded,588 
linear operator, 582 
linear space, see linear vector space 

normed,572 
linear subspace, 571 
linear system, 142 

abstract, 176 
linear vector space, 571 
linearly dependent, 572 
linearly independent, 572 
Liouville's theorem, 566 
lower linear fractional transformation, 430 
Luenberger observer, 246 
Lur'e equations, 320 
Lyapunov equation, 160,217,252 
Lyapunov equations, 6 

Mobius map, 452 
maximal, 579 

M 

maximal robustness margin, 479 
maximum robustness margin 

coprime-factor uncertainty, 508 
for ~(A, B, C, D) 

coprime-factor uncertainty, 522 
for e-sT Go(s), 513 

McMillan degree, 359, 658 
measurable 

of semigroups, 622 
strong, 621 
uniform, 621 
weak,621 

meromorphic, 565 
mild evolution operator, 117 
mild evolution operator generated by A + 

DO,118 
mild solution, 104, 121, 125, 133 
minimal realization, 8 
minimum sensitivity problem, 544 
Minkowski inequality, 572, 573 
minor, 659 
mixed sensitivity problem 

weighted, 553 
modal controllable, 165 
model matching, 542 
model reduction, 8 
multiplicative subset, 652 
multiplicative uncertainty, 471 
multiplicity, algebraic, 611 



N 
natural embedding, 592 
Nehari extension problem, 392 

for :E(A, B, C), 432 
for :E(A, B, C, D), 429, 433 
suboptimal, 413 

Nehari problem, 387 
Nehari's theorem, 426 
nonnegative, 606 
nonobservable subspace, 157 

nonzero limit at 00 in ct, 569 
norm, 572 

equivalent, 573 
Hankel,401 
induced by inner product, 576 
operator, 583 

normal, 603 
normalized doubly coprime factorization 

over MA_(O), 358 
normalized left-coprime factorization 

of e-a , Go (s), 381 
over MA_ (0), 358 

normalized right-coprime factorization 
of :E(A, B, C, D), 371 
of e-as Go(s), 380 
over MA_(O), 358 

normed linear space, 572 
Nyquist index, 570 
Nyquist test, 465 
Nyquist theorem, 463, 569 

o 
observability gramian, 6, 154 

discrete-time, 212 
extended, 159 

observability map, 6, 154, 176 
discrete-time, 212 
extended, 159 

observable, 6 
approximately, 154 
exactly, 154 

observer, see Luenberger observer 
open, 574 
open mapping theorem, 586 
operator, 582 

adjoint 
bounded, 601 
unbounded,603 

algebraic inverse, 583 

bounded, 583 
closed,595 
coercive, 606 
compact, 587 
dual 

bounded,594 
unbounded, 598 

finite rank, 582 

Index 695 

Hankel, see Hankel operator 
inverse, 583, 609 
linear, 582 
nonnegative, 606 
norm, 583 
positive, 606 
self-adjoint, 605 
square root, 606 
symmetric, 605 
unbounded,594 

optimal control, 275 
discrete-time, 329 

optimal state trajectory, 275 
optimally robust controller, 479 
optimizable, 292, 329 
order, 610 

of a pole, 567 
of a zero, 566 

orientation, 567 
orthogonal, 578 
orthogonal complement, 578 
orthogonal projection, 607 
orthogonal projection lemma, 607 
orthogonal projection on V, 607 
orthonormal basis, 579 
orthonormal set, 578 
output, 141 
output injection, 227 
output injection operator, 227 
output normal realization, 455 
output space, 176 

p 
Paley-Wiener theorem, 645, 646 
parallel connection, 373 
parallelogram law, 576 
Parseval equality, 579 
Parseval's equality, 642 
Pettis integrable, 624 
Pettis integral, 624 
piecewise constant functions, 627 



696 Index 

pivot space, 600 
point spectrum, 610 
poles, 359, 380, 567, 658 
positive, 606 
positive real, 320, 384 
positively oriented, 567 
power stabilizable, 266 
power stable, 212, 264 
principal ideal, 649 
principal ideal domain, 649 
principal-axis balanced, 8 
principle of optimality, 276 
principle of the argument, 569 
projection, 607 
proper, 653 

on ct, 351 
Pythagoras' theorem, 578 

Q 
quotient algebra, 652 
quotient field, 652 
quotient field of Hoc, 654 
quotient ring, 652 

ran, 582 
range, 582 
rational controller 

delay system 

R 

additive uncertainty, 500 
coprime-factor uncertainty, 531 

existence, 495 
for mixed sensitivity problem, 554 
for Riesz-spectral system, 261 
heat equation 

additive uncertainty, 497 
coprime-factor uncertainty, 530 

robustly stabilizing 
additive uncertainty, 492-494 
coprime-factor uncertainty, 528 

reachability subspace, 157 
reachable, 143 
real transfer function, 196 
real vector space, 571 
realization, 7 

balanced,8 
minimal, 8 
output normal, 455 
principal-axis balanced, 8 
truncated balanced, 8 

rectifiable curve, 566 
reduced-order model, 494 
reference signal, 325 
reflexive, 592 
region, 565 
regulator problem, 270 
relatively compact, 574 
residual spectrum, 610 
residue, 568 
resolvent equation, 611 
resolvent operator, 24, 609 
resolvent set, 608 
retarded differential equation, see delay 

equation/system 
Riccati differential equation, see differ­

ential Riccati equation 
Riccati equation 

algebraic, 293 
differential, 281 

Riemann-Lebesgue lemma, 636 
Riesz basis, 38, 89 
Riesz representation theorem, 598 
Riesz-spectral operator, 41, 89 

Co-semi group, 42 
T(t)-invariant,76 
resolvent, 41 

Riesz-spectral system, 141 
,B-exponentially detectable, 237,239 
,B-exponentially stabilizable, 237, 

239 
approximately controllable, 164 
approximately observable, 164 
impulse response, 183 
transfer function, 183 

right divisor, 656 
right multiple, 657 
right-coprime, 657, 660 
right-coprime factorization 

of L(A, B, C, D), 366 

over MA-(,B), 353 
over MR, 657 

right-coprime over MA-(,B), 352 
right-coprime-factor uncertainty, 557 
ring, 649 
robust controller 

optimally, 479 
robust stabilization, 470 
robustly stabilizable 

additive perturbations, 480 



robustly stabilizes, 473 
robustly stabilizing controller 

additive perturbations, 482 
for e-,T 

s-ex 
additive perturbation, 484, 498 
coprime-factor uncertainty, 531 

for ~CA, B, C, D) 
coprime-factor uncertainty, 526 

robustly stable, 473 
with robustness margin E: with re-

spect to 
additive perturbations, 479 
coprime-factor perturbations, 479 
multiplicative perturbations, 479 

robustness margin, 473 
maximal, 479 

Rouche's theorem, 567 

s 
saturated, 652 
saturated mUltiplicative subset, 338 
scalar multiplication, 571 
Schmidt decomposition, 400, 618 
Schmidt pair 

for ~CA, B, C), 412 
of e-sT GoCs), 403 

Schmidt pairs, 400,618 
self-adjoint, 605 
semigroup, see Co-semigroup 
semi group invariance, see T C t)-invariant 
semilinear, 576 
sensitivity function, 553 
separable, 574 
set 

bounded, 574 
closed, 574 
compact, 574 
dense, 574 
maximal, 579 
open, 574 
orthogonal, 578 
relatively compact, 574 

shift operator, 16, 86 
controllability, 151 
stabilizability, 257 

shift semigroup, see shift operator 
shift-invariant, 648 
simple, 566, 621 
singular values, 399, 584, 618 
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skew-adjoint, 89 
small gain theorem, 350, 463, 542 
Sobolev spaces, 577 
solution 

classical, 10 1, 121 
mild, 104, 121, 133 
weak, 105 

span, 572 
spectral factorization, 319 
spectral projection, 71 
spectral radius, 614 
spectrum, 610 

continuous, 610 
point, 610 
residual, 610 

spectrum decomposition assumption at 
8,232 

spectrum determined growth assumption, 
222,267 

spillover, 494 
square root, 606 
stability 

discrete-time, 264 
not determined by pCA), 218, 253 

stability margin, 215, 485 
stabilizability 

discrete-time, 266 
stabilizability by high gain feedback, 258 
stabilizable, see exponentially stabiliz­

able 
,B-exponentially , 227 
exponentially, 9, 227 

stabilizes, 458 
stabilizing 

with robustness margin E: with re-
spectto 

additive perturbations, 479 
coprime-factor perturbations, 479 
multiplicative perturbations, 479 

stabilizing controller, 458 
stable, see exponentially stable 

,B-exponentially,215 
,B-input-output, 457, 458, 466 
w-,534 
exponentially, 6, 215 
input-output, 457 
power, 264 
strongly, 251 
weakly, 251 
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state, 141 
state linear system, 141 
state space, 176 
steam chest, 135 
strictly proper, 640, 653 

on ct, 351 
strip, see vertical strip 
strong convergence, 586 
strong stability, 267 
strongly (Lebesgue) measurable, 621 
strongly continuous at to, 586 

strongly continuous group, 88 
strongly continuous semi group, see Co-

semi group 
strongly differentiable at to, 633 
strongly measurable, 621 
strongly stable, 310 
Sturm-Liouville operators, 82 
suboptimal Nehari extension problem, 

413 
symmetric, 605 

T 
time-domain Hankel operator, 40 I, 454 
topological dual space, 589 
topologically isomorphic, 573 
totally disconnected, 41 
tracking, 262, 543 
tracking problem, 325 
transfer function, 5, 7, 178,335 

delay system, 182 
not unique on peA), 181 
Riesz-spectral system, 183 

triangular inequality, 572 
truncated balanced approximation, 446 
truncated balanced realization, 8 
T(t)-invariant, 69, 97-98 

Riesz-spectral operator, 76 
two-sided Laplace transform, 637 

u 
unbounded,594 
unbounded B operator, 143 
uncertainty 

additive, 470 
left-coprime-factor, 471 
multiplicative, 471 
right-coprime-factor, 557 

uniform boundedness theorem, 586 
uniform convergence, 585 

uniformly (Lebesgue) measurable, 621 
uniformly continuous at to, 586 

uniformly differentiable at to, 633 
uniformly measurable, 621 
unimodular, 350, 657 
uniqueness of the Laplace transform, 636 
unit, 649 
unitary, 603 
unitary group, 89 
upper linearfractional transformation, 430 

V 
variation of constants formula, 14 
vector space 

complex, 571 
linear, 571 
real,571 

vertical strip, 666 

w 
w-stable, 534 
wave equation, 35, 93, 94 

Co-semi group, 95 
approximately controllable, 165 
approximately observable, 165 
as Riesz-spectral system, 46 
boundary control, 128, 206 
controllability, 149 
in Callier-Desoer class, 342 
optimal control 

finite time, 286 
infinite time, 309 

weak convergence, 593 
weak solution, 80, 105, 106 
weak solution of the partial differential 

equation, 631 
weakly (Lebesgue) measurable, 621 
weakly differentiable at to, 633 
weakly measurable, 621 
weakly stable, 251 
weighted additive perturbations, 551 
weightedmixed sensitivity problem, 553 

y 
Youla parametrization, 461 

z 
z-transform, 455 
zero, 211,359,382,566 
zero element, 571, 649 


