convolution product (A.7.12) we have

$$
\begin{aligned}
\widehat{f * h}= & \widehat{f_{a} * h_{a}}+\sum_{n=1}^{\infty} \widehat{f_{n} h_{a}}\left(\cdot-t_{n}\right)+\sum_{n=1}^{\infty} \widehat{h_{n} f_{a}}\left(\cdot-\tau_{n}\right)+ \\
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} h_{m} f_{n} \widehat{\delta}\left(\cdot-\left(t_{n}+\tau_{m}\right)\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
(\widehat{f * h})(s)= & \widehat{f_{a}}(s) \widehat{h_{a}}(s)+\sum_{n=1}^{\infty} f_{n} e^{-s t_{n}} \widehat{h_{a}}(s)+ \\
& \sum_{n=1}^{\infty} h_{n} e^{-s \tau_{n}} \widehat{f_{a}}(s)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} h_{m} f_{n} e^{-\left(t_{n}+\tau_{m}\right) s}
\end{aligned}
$$

by Lemma A.6.5.c and the definition of the Laplace transform

$$
=\hat{f}(s) \cdot \hat{h}(s) \quad \text { for } s \in \overline{\mathbb{C}_{\beta}^{+}} .
$$

In our applications we shall consider the class of transfer functions given by

$$
\begin{equation*}
\hat{\mathcal{A}}(\beta):=\{\hat{f} \mid f \in \mathcal{A}(\beta)\} . \tag{A.7.19}
\end{equation*}
$$

Corollary A.7.48 $\hat{\mathcal{A}}(\beta)$ is a commutative Banach algebra with identity under pointwise addition and multiplication.

Proof This follows from the properties of $\mathcal{A}(\beta)$ and the Laplace transform as listed in Lemmas A.7.46 and A.7.47, respectively.

We quote two important properties of $\hat{\mathcal{A}}(\beta)$.
Theorem A.7.49 $\hat{f} \in \hat{\mathcal{A}}(\beta)$ is invertible over $\hat{\mathcal{A}}(\beta)$ if and only if

$$
\begin{equation*}
\inf _{s \in \in \mathbb{C}_{\beta}^{+}}|\hat{f}(s)|>0 . \tag{A.7.20}
\end{equation*}
$$

Proof Hille and Phillips [129, theorem 4.18.6].
Since $\mathcal{A}(\beta)$ is an integral domain with identity, we can define coprimeness as in Definition A.7.41. We note that there exist elements in its quotient algebra that do not admit coprime factorizations (Logemann [161] and Vidyasagar, Schneider, and Francis [251]).

Theorem A.7.50 (\hat{f}, \hat{h}) are coprime over $\hat{\mathcal{A}}(\beta)$ if and only if

$$
\begin{equation*}
\inf _{s \in \overline{\mathbb{C}_{\beta}^{+}}}(|\hat{f}(s)|+|\hat{h}(s)|)>0 . \tag{A.7.21}
\end{equation*}
$$

Proof Callier and Desoer [36], theorem 2.1.
We need the following facts about almost periodic functions from Corduneau [44] and Bohr [28].

Definition A.7.51 f is almost periodic on the vertical strip $[\beta, \gamma]=\{s \in \mathbb{C} \mid \beta \leq$ $\operatorname{Re}(s) \leq \gamma\}$ if it is continuous there and for any $\varepsilon>0$ there corresponds a $\delta(\varepsilon)>0$ such that any interval of length $\delta(\varepsilon)$ on the imaginary axis contains at least one point, $\jmath \eta$, for which $|f(s+J \eta)-f(s)|<\varepsilon$ for any s in this strip.

It is easy to see that $e^{-s t_{n}}$ is an almost periodic function on any vertical strip. In the next lemma, we shall show that this also holds for infinite sums of these terms.

Lemma A.7.52 Suppose that $\hat{f}(s)=\sum_{n=1}^{\infty} f_{n} e^{-s t_{n}}$, where $f_{n} \in \mathbb{C}, t_{n} \in \mathbb{R}$ and $t_{1}=0, t_{n}>0$ for $n \geq 2$ and $\sum_{n=1}^{\infty}\left|f_{n}\right| e^{-\beta t_{n}}<\infty$ for a given real β. Then $\hat{f}(s)$ is holomorphic on \mathbb{C}_{β}^{+}and bounded on $\overline{\mathbb{C}_{\beta}^{+}}$. Furthermore, $\hat{f}(s)$ is an almost periodic function on any vertical strip $[\beta, \beta+\mu], \mu>0$.
Proof In Lemma A. 7.47 we proved that $\hat{f}(s)$ is bounded on $\overline{\mathbb{C}_{\beta}^{+}}$. We also proved that it is holomorphic on \mathbb{C}_{β}^{+}and continuous on the line $s=\beta+\jmath \omega, \omega \in \mathbb{R}$; thus it is continuous on the vertical strip $[\beta, \beta+\mu]$ for $\mu>0$.

The rest of the proof can be found in Corduneau [44] following theorems 3.10 and 3.13. An alternative proof can be found in Bohr [28, appendix II].

That these functions are uniformly continuous on any closed vertical strip $[\beta+\varepsilon, \gamma]$ follows from the following general lemma.

Lemma A.7.53 Consider a function $g(s)$ that is holomorphic on the vertical open strip (a, b) and bounded on any closed vertical strip $\left[a_{1}, b_{1}\right]$ contained in (a, b). Then $g(s)$ is uniformly continuous on the closed vertical strip $\left[a_{1}, b_{1}\right]$.
Proof Corduneau [44, theorem 3.7].
Next we examine the asymptotic behavior of the almost periodic function $\sum_{n=1}^{\infty} f_{n} e^{-s t_{n}}$. Notice that while e^{-s} tends to zero as $\operatorname{Re}(s) \rightarrow \infty$, it does not tend to zero as $|s| \rightarrow \infty$.

Lemma A.7.54 Suppose that $\hat{f}(s)=\sum_{n=1}^{\infty} f_{n} e^{-s t_{n}}$, where $f_{n} \in \mathbb{C}, t_{n} \in \mathbb{R}$ and $t_{1}=0, t_{n}>0$ for $n \geq 2$ and $\sum_{n=1}^{\infty}\left|f_{n}\right| e^{-\beta t_{n}}<\infty$ for a given real β. \hat{f} satisfies
a. $\left|\hat{f}(s)-f_{1}\right| \rightarrow 0$ as $\operatorname{Re}(s) \rightarrow \infty$ uniformly with respect to $\operatorname{Im}(s)$;
b. $\sup _{s \in \overline{\mathbb{C}_{\beta}^{+}},|s| \geq \rho}|\hat{f}(s)| \rightarrow 0$ as $\rho \rightarrow \infty$ if and only if $\hat{f}(s)=0$ on $\overline{\mathbb{C}_{\beta}^{+}}$.

Proof a. The following estimate holds

$$
\left|\hat{f}(s)-f_{1}\right| \leq \sum_{n=2}^{\infty}\left|f_{n}\right| e^{-\operatorname{Re}(s) t_{n}} \leq\left[\sum_{n=2}^{\infty}\left|f_{n}\right| e^{-\beta t_{n}}\right] e^{-(\operatorname{Re}(s)-\beta) t_{\text {min }}}
$$

for $\operatorname{Re}(s)>\beta$, where $t_{\text {min }}$ is the infinum of $t_{n}, n \geq 2$. This establishes a for the case that $t_{\text {min }}$ is positive. For the more general case see Corduneau [44, theorem 3.20] or Bohr [28, p. 106].
b. Let s_{0} be a element in $\overline{\mathbb{C}_{\beta}^{+}}$. We know that given $\varepsilon>0$ there exists $\rho_{1}>0$ such
that $|\hat{f}(s)|<\varepsilon$ for all $s \in\left\{s \in \overline{\mathbb{C}_{\beta}^{+}}\left||s| \geq \rho_{1}\right\}\right.$. Without loss of generality, we may assume that $\left|s_{0}\right|<\rho_{1}$. By Lemma A.7.52, \hat{f} is almost periodic on the vertical strip [β, ρ_{1}] and so by Definition A. 7.51 for $\varepsilon>0$, there exists a $\delta(\varepsilon)>0$ and a point $\eta \in\left[3 \rho_{1}, 3 \rho_{1}+\delta(\varepsilon)\right]$ such that $\left|\hat{f}\left(s_{1}+J \eta\right)-\hat{f}\left(s_{1}\right)\right|<\varepsilon$ for all s_{1} in the vertical strip $\left[\beta, \rho_{1}\right]$. Since $s_{1}+j \eta \in\left\{s \in \overline{\mathbb{C}_{\beta}^{+}}| | s \mid \geq \rho_{1}\right\}$, we know that $\left|\hat{f}\left(s_{1}+j \eta\right)\right|<\varepsilon$ and consequently $\left|\hat{f}\left(s_{1}\right)\right|<2 \varepsilon$ holds for all s_{1} in this vertical strip $\left[\beta, \rho_{1}\right]$. In particular, we conclude that $\left|\hat{f}\left(s_{0}\right)\right|<2 \varepsilon$. Since $s_{0} \in \overline{\mathbb{C}_{\beta}^{+}}$and $\varepsilon>0$ are arbitrary, it follows that $\hat{f}(s)=0$ on $\overline{\mathbb{C}_{\beta}^{+}}$.

Finally, we state an important result on the asymptotic behavior of elements in $\hat{\mathcal{A}}(\beta)$.
Corollary A.7.55 The function $\hat{f} \in \hat{\mathcal{A}}(\beta)$ has the limit zero as s goes to infinity in $\overline{\mathbb{C}_{\beta}^{+}}$, i.e., $\sup _{s \in \mathbb{C}_{\beta}^{+}, s \mid \geq \rho}|\hat{f}(s)| \rightarrow 0$ as $\rho \rightarrow \infty$ if and only if $\hat{f}(\cdot)=\hat{f}_{a}(\cdot)$.

Proof This follows from Lemma A.7.54 and Property A.6.2.g.

The subclass of $\hat{\mathcal{A}}(0)$ consisting of Laplace transforms of functions in $L_{1}(0, \infty)$ has another special property.

Theorem A.7.56 The subset of strictly proper, stable, rational transfer functions is dense in the class of Laplace transforms of functions in $\boldsymbol{L}_{1}(0, \infty)$ in the \boldsymbol{H}_{∞}-norm.

Proof For $h \in \boldsymbol{L}_{1}(0, \infty)$, by Property A.6.2 its Laplace transform \hat{h} in $\hat{\mathcal{A}}(0)$ is holomorphic on \mathbb{C}_{0}^{+}and continuous on $\overline{\mathbb{C}_{0}^{+}}$. Furthermore, we have that $\lim _{|s| \rightarrow \infty}|\hat{h}(s)|=0$ for $s \in \overline{\mathbb{C}_{0}^{+}}$. We reduce this to an equivalent problem on the unit disc, $\mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\}$ by introducing the bilinear transformation $\theta: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{C}_{0}^{+}}$defined by

$$
\begin{equation*}
\theta(z):=\frac{1+z}{1-z} \quad \text { for } z \in \overline{\mathbb{D}} \backslash\{1\} . \tag{A.7.22}
\end{equation*}
$$

It is easy to see that $\theta(\mathbb{D})=\mathbb{C}_{0}^{+}$, and it maps the unit circle excluding the point 1 on the imaginary axis. Thus $f_{d}(z):=\hat{h}(\theta(z))$ is holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}} \backslash\{1\}$. Furthermore, it is easy to see that

$$
\lim _{z \in \mathbb{D}, z \rightarrow 1} f_{d}(z)=\lim _{s \in \mathbb{C}_{0}^{+},|s| \rightarrow \infty} \hat{h}(s)=0 .
$$

Hence f_{d} is continuous on the unit circle.
It is known from Theorem A.1.12 that the subset of polynomials with complex coefficients is dense in the \boldsymbol{H}_{∞}-norm in the class of complex functions that are holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Hence for every $\varepsilon>0$ there exists a polynomial Q_{ε} such that

$$
\sup _{z \in \mathbb{D}}\left|f_{d}(z)-Q_{\varepsilon}(z)\right|<\varepsilon .
$$

Since $f_{d}(1)=0$, there holds $\left|Q_{\varepsilon}(1)\right|<\varepsilon$. Defining $P_{\varepsilon}:=Q_{\varepsilon}-Q_{\varepsilon}(1)$, gives $P_{\varepsilon}(1)=0$ and

$$
\sup _{z \in \mathbb{D}}\left|f_{d}(z)-P_{\varepsilon}(z)\right|<2 \varepsilon .
$$

Now the bilinear transformation (A.7.22) shows that \boldsymbol{H}_{∞} is isometrically isomorphic to $\boldsymbol{H}_{\infty}(\mathbb{D})$, the space of holomorphic complex functions on \mathbb{D} bounded on \mathbb{D}. Thus we see that

$$
\sup _{s \in \mathbb{C}_{0}^{+}}\left|\hat{h}(s)-P_{\varepsilon}\left(\theta^{-1}(s)\right)\right|=\sup _{z \in \mathbb{D}}\left|f_{d}(z)-P_{\varepsilon}(z)\right|<2 \varepsilon
$$

The function $P_{\varepsilon}\left(\theta^{-1}(\cdot)\right)$ is a stable rational function in $\overline{\mathbb{C}_{0}^{+}}$. Furthermore, we have that

$$
\lim _{s \in \mathbb{C}_{0}^{+} \cdot|s| \rightarrow \infty} P_{\varepsilon}\left(\theta^{-1}(s)\right)=\lim _{z \in \overline{\mathbb{D}} \cdot z \rightarrow 1} P_{\varepsilon}(z)=0,
$$

and so $P_{\varepsilon}\left(\theta^{-1}(\cdot)\right)$ is strictly proper.
In fact, the functions in \boldsymbol{H}_{∞} that are approximable by rationals in the \boldsymbol{H}_{∞}-norm are exactly those that are continuous on the extended imaginary axis. The proof is similar to the analogous result in Lemma A.6.11 on approximation in the \boldsymbol{L}_{∞}-norm, except that one appeals to Theorem A.1.12 instead of the Weierstrass Theorem. For example, e^{-s} is not approximable by rationals, but $\frac{e^{-s}}{s+1}$ is.

The proof of Theorem A. 7.56 is based on Nett [189]. More powerful approximation results can be found in Glover, Curtain, and Partington [112], Glover, Lam, and Partington [113], [114], [115], Ghu, Khargonekar, and Lee [106], Partington et al. [200], Zwart et al. [276] and Makila [174].

Further properties of these convolution algebras can be found in Hille and Phillips [129, sections 4.16-4.18], Callier and Desoer [36]-[38], and Logemann [161] and [162].

References

[1] N.U. Ahmed and K.L. Teo; Optimal Control of Distributed Parameter Systems, North Holland, Oxford, 1981.
[2] Y. Alekal, P. Brunovsky, D.H. Chyung, and E.B. Lee; The quadratic problem for systems with time delays, IEEE Trans. Autom. Control, AC-16, pp. 673-688, 1971.
[3] J.P. Aubin; Applied Functional Analysis, John Wiley \& Sons, New York, 1979.
[4] J. Bakema; Robust Controller Design for Delay Systems, M. Sc. Thesis, University of Groningen, the Netherlands, 1993.
[5] A.V. Balakrishnan; Applied Functional Analysis, Springer Verlag, 1976.
[6] A.V. Balakrishnan; Strong Stabilizability and the Steady State Riccati Equation, Applied Mathematics and Optimization, 7, pp. 335-345, 1981.
[7] M. Balas; Towards a (More) Practical Control Theory for Distributed Parameter Systems, Control and Dynamic Systems: Advances in Theory and Applications, vol. 18, C.T. Leondes (ed.), Academic Press, New York, 1980.
[8] J. Ball; Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63, pp. 370-373, 1977.
[9] J.A. Ball and J.W. Helton; A Beurling-Lax Theorem for the Lie group $U(m, n)$ which contains Most Classical Interpolation Theory, J. Operator Theory, 8, pp. 107-142, 1983.
[10] H.T. Banks and A. Manitius; Application of abstract variational theory to hereditary systems - a survey, IEEE Trans. Automatic Control, AC-19, pp. 524-533, 1974.
[11] V. Barbu and G. Da Prato; Hamilton-Jacobi Equations in Hilbert Spaces, Research Notes in Mathematics, Pitman, Boston, London, Melbourne, 1983.
[12] J.F. Barman, F.M. Callier, and C.A. Desoer; \boldsymbol{L}^{2}-Stability and \boldsymbol{L}^{2}-Instability of Linear Time-Invariant Distributed Feedback Systems Perturbed by a Small Delay in the Loop, IEEE Trans. Autom. Control, AC-18, pp. 479-484, 1973.
[13] C.J.K. Batty; Tauberian Theorems for the Laplace-Stieltjes Transform, Trans. Amer. Math. Soc., 322, pp. 783-804, 1990.
[14] C.J.K. Batty and V.Q. Phong; Stability of Individual Elements under one-parameter semigroups, Trans. Amer. Math. Soc., 322, pp. 805-818, 1990.
[15] A. Bellini-Morante; Applied Semigroups and Evolution Equations, Clarendon Press, Oxford, 1979.
[16] R. Bellman and K.L. Cooke; Asymptotic behavior of solutions of differentialdifference equations, Mem. Amer. Math. Soc., 35, 1959.
[17] R. Bellman and K.L. Cooke; Differential-Difference Equations, Academic Press, 1963.
[18] C.D. Benchimol; A Note on Weak Stabilizability of Contraction Semigroup, SIAM J. Control and Optim., 16, pp. 373-379, 1978.
[19] C.D. Benchimol; Feedback Stabilizability in Hilbert Spaces, J. App. Math and Opt., 4, pp. 225-248, 1978.
[20] C.D. Benchimol; The Stabilizability of Infinite Dimensional Linear Time Invariant Systems, Thesis UCLA, 1977.
[21] A. Bensoussan, G. Da Prato, M.C. Delfour, and S.K. Mitter; Representation and Control of Infinite Dimensional Systems, Volume 1, Systems \& Control: Foundations \& Applications, Birkhauser, Boston, 1992.
[22] A. Bensoussan, G. Da Prato, M.C. Delfour, and S.K. Mitter; Representation and Control of Infinite Dimensional Systems, Volume 2, Systems \& Control: Foundations \& Applications, Birkhauser, Boston, 1993.
[23] D.S. Bernstein and D.C. Hyland; The Optimal Projection Equations for FiniteDimensional Fixed-Order Dynamic Compensation of Infinite-Dimensional Systems, SIAM J. Contr. and Optim., 24, pp. 122-151, 1986.
[24] K.P.M. Bhat; Regulator Theory for Evolution Systems, Ph.D. Thesis, University of Toronto, 1976.
[25] K.P.M. Bhat and H.N. Koivo; Modal characterization of controllability and observability for time delay systems, IEEE Trans. Autom. Control, AC-21, pp. 292-293, 1976.
[26] H. Blomberg and R. Ylinen; Algebraic Theory for Multivariable Systems, Academic Press, 1983.
[27] S. Bochner and K. Chandrasekharan; Fourier Transforms, Annals of Mathematics Studies, Number 19, Princeton University Press, Princeton, 1949.
[28] H. Bohr; Almost Periodic Functions, Chelsea Publishing Company, New York, 1947.
[29] J. Bontsema; Dynamic Stabilization of Large Flexible Space Structures, Ph.D. Thesis, Rijksuniversiteit Groningen, the Netherlands, 1989.
[30] J. Bontsema and R.F. Curtain; A Note on Spillover and Robustness of Flexible Systems, IEEE Trans. Autom. Control, AC-33, pp. 567-569, 1988.
[31] J. Bontsema and R.F. Curtain; Robust stabilization of a flexible beam using normalized coprime factorization approach, Workshop on Control of Uncertain Systems, Proceedings of an International Workshop, Eds. D. Hinrichsen and B. Martensson, Birkhauser, Boston-Basel-Berlin, pp. 1-18, 1990.
[32] J. Bontsema, R.F. Curtain, and J.M. Schumacher; Robust Control of Flexible Structures: A Case Study. Automatica, 24, No. 2, pp. 177-186, 1988.
[33] A.G. Butkovskiy; Green's Functions and Transfer Functions Handbook, Transl. by L.W. Longdon, Ellis Horwood Ltd., Chichester, 1982.
[34] A.G. Butkovskiy; Theory of Optimal Control of Distributed Parameter Systems, American Elsevier, 1969.
[35] P.L. Butzer and H. Berens; Semigroups of Operators and Approximations, Springer Verlag, 1967.
[36] F.M. Callier and C.A. Desoer; An Algebra of Transfer Functions for Distributed Linear Time-Invariant Systems, IEEE Trans. Circuits and Systems, CAS-25, pp. 651-663, 1978 (Corrections: CAS-26, p. 320, 1979).
[37] F.M. Callier and C.A. Desoer; Simplifications and New Connections on an Algebra of Transfer Functions of Distributed Linear Time-Invariant Systems, IEEE Trans. Circuits and Systems, CAS-27, pp. 320-323, 1980.
[38] F.M. Callier and C.A. Desoer; Stabilization, Tracking and Distributed Rejection in Multivariable Convolution Systems, Ann. Soc. Sci. Bruxelles, 94, pp. 7-51, 1980.
[39] F.M. Callier and J. Winkin; On Spectral Factorization and LQ-Optimal Regulation for Multivariable Distributed Systems, Int. J. Control, 52, pp. 55-75, 1990.
[40] F.M. Callier, V.H.L. Cheng, and C.A. Desoer; Dynamic intepretation of poles and transmission zeros for distributed multivariable systems, IEEE Trans. Circuits and Systems, CAS-28, pp. 300-306, 1981.
[41] M. Chen and C.A. Desoer; Necessary and Sufficient Conditions for Robust Stability of Distributed Feedback Systems, Int. J. Control, 35, pp. 255-267, 1982.
[42] B.M.N. Clarke and D. Williamson; Control Canonical Forms and Eigenvalue Assignment by Feedback for a Class of Linear Hyperbolic Systems, SIAM J. Control and Optim., 19, pp. 711-729, 1981.
[43] B.D. Coleman and V.J. Mizel; Norms and semigroups in the theory of fading memory, Arch. Rational Mech. Anal., 23, pp. 87-123, 1966.
[44] C. Corduneanu; Almost Periodic Functions, J. Wiley, New York, 1968.
[45] R.F. Curtain; A comparison of finite-dimensional controller designs for distributed parameter systems, Control-Theory and Advanced Technology, 9, pp. 609-628, 1993.
[46] R.F. Curtain; A synthesis of time and frequency domain methods for the control of infinite-dimensional systems: a system theoretic approach, in Control and Estimation in Distributed Parameter systems, Ed. H.T. Banks, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1992.
[47] R.F. Curtain; Equivalence of Input-Ouput Stability and Exponential Stability for Infinite-dimensional systems, J. Math. Systems Theory, 21, pp. 19-48, 1988.
[48] R.F. Curtain; Finite-dimensional compensators for parabolic distributed systems with unbounded control and observation, SIAM J. Control and Optim., 22, pp. 255-276, 1984.
[49] R.F. Curtain; Robust Stabilizability of Normalized Coprime Factors; the InfiniteDimensional Case. Int. J. Control, 51, pp. 1173-1190, 1990.
[50] R.F. Curtain; Stabilization of boundary control distributed systems via integral dynamic output feedback of a finite-dimensional compensator, Analysis and Optimization of Systems, Editors: A. Bensoussan and J.L. Lions, Lecture Notes in Control and Information Sciences, vol. 44, pp. 761-776, 1982.
[51] R.F. Curtain and K. Glover; Balanced Realisations for Infinite-Dimensional Systems. Operator Theory and Systems, Proc. Workshop Amsterdam, June 4-7, 1985, Ed. Bart, Gohberg and Kaashoek, Birkhauser, Basel, pp. 87-104, 1986.
[52] R.F. Curtain and K. Glover; Robust Stabilization of Infinite Dimensional Systems by Finite Dimensional Controllers, Systems and Control Letters, 7, pp. 41-47, 1986.
[53] R.F. Curtain and A.J. Pritchard; Infinite-Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences. Vol. 8, Springer Verlag, Berlin, 1978.
[54] R.F. Curtain and A.J. Pritchard; Robust Stabilization of Infinite-Dimensional Systems with respect to Coprime-Factor Perturbations, pp. 437-456, in Control Theory, Dynamical Systems and Geometry of Dynamics, ed. D. Elworthy, Everitt and Lee, Marcel Dekker, New York, 1993.
[55] R.F. Curtain and A.J. Pritchard; The Infinite Dimensional Riccati Equation, J. Math. Anal. \& Appl., 47, pp. 43-57, 1974.
[56] R.F. Curtain and A.J. Pritchard; The Infinite Dimensional Riccati Equation for Systems Defined by Evolution Operators, SIAM J. Control and Optim., 14, pp. 951-983, 1975.
[57] R.F. Curtain and A. Ran; Explicit Formulas for Hankel Norm Approximations of Infinite-dimensional Systems, J. Integral Equations and Operator theory, 12, pp. 455-469, 1989.
[58] R.F. Curtain and L. Rodman; Comparison Theorems for Infinite-Dimensional Riccati Equations, Systems and Control Letters, 15, pp. 153-159, 1990.
[59] R.F. Curtain and A. Rodriguez; Necessary and Sufficient Conditions for J-spectral Factorizations with a J-lossless Property for Infinite-Dimensional Systems in Continuous and Discrete Time, J. of Algebra and Applications, 203, pp. 327-358, 1994.
[60] R.F. Curtain and D. Salamon; Finite Dimensional Compensators for Infinite Dimensional Systems with Unbounded Input Operators, SIAM J. Conrol and Optim., 24, pp. 797-816, 1986.
[61] R.F. Curtain and Y. Zhou; The weighted mixed-sensitivity problem for a class of irrational transfer matrices, Proceedings of the Conference on Computation and Control IV, Bozeman, Montana, 3-9 August 1994, Editors J. Lund and K. Bowers, Progress in Systems and Control Theory, Birkhauser, Boston.
[62] R.F. Curtain and H.J. Zwart; The Nehari Problem for the Pritchard-Salamon class of Infinite-Dimensional Linear Systems: a direct approach, Integr. Equat. Oper. Th, 18, pp. 130-153, 1994.
[63] G. Da Prato; Synthesis of Optimal Control for Infinite-Dimensional Periodic Problems, SIAM J. Control and Optim., 25, pp. 706-714, 1987.
[64] G. Da Prato and A. Ichikawa; Quadratic Control for Linear Periodic Systems, Applied Math. and Optim., 18, pp. 39-66, 1988.
[65] R. Datko; A Linear Control Problem In Abstract Hilbert Space, J. Diff. Eqns., 9, pp. 346-359, 1971.
[66] R. Datko; Extending a Theorem of A.M. Liapunov to Hilbert Space, J. Math. Anal. Appl., 32, pp. 610-616, 1970.
[67] R. Datko; Neutral autonomous functional equations with quadratic cost, SIAM J. Control, 12, pp. 70-82, 1974.
[68] R. Datko; Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control and Optim., 26, pp. 697-713, 1988.
[69] R. Datko; Some Linear Nonautonomous Control Problems with Quadratic Cost, J. Diff. Eqns., 21, pp. 231-262, 1976.
[70] R. Datko; Unconstrained control problem with quadratic cost, SIAM J. Control, 11, pp. 32-52, 1973.
[71] R. Datko, J. Lagnese, and M.P. Polis; An Example on the Effect of Time Delays in Boundary Feedback Stabilization of Wave Equations. SIAM J. Control and Optim., 24, pp. 152-156, 1986.
[72] E.B. Davies; One-Parameter Semigroups, Academic Press, London, 1980.
[73] M.C. Delfour; State theory for linear hereditary-differential systems, J. Anal. Appl., 60, pp. 8-35, 1977.
[74] M.C. Delfour; The largest class of hereditary systems defining a C_{0}-semigroup on the product space, Canadian J. Math., Vol. XXXII, No. 4, pp. 969-978, 1980.
[75] M.C. Delfour; The linear quadratic optimal control problem for hereditary differential systems: theory and numerical solution, Appl. Math. Optim., 3, pp. 101-162, 1977.
[76] M.C. Delfour; The linear-quadratic optimal control problem with delays in the state and control variables: A state space approach, SIAM J. Control and Optim., 24, pp. 835-883, 1986.
[77] M.C. Delfour and J. Karrakchou; State space theory of linear time invariant systems with delays in state, control and observation variables, part I, J. Math. Anal. and Appl., 125, pp. 361-399, 1987.
[78] M.C. Delfour and J. Karrakchou; State space theory of linear time invariant systems with delays in state, control and observation variables, part II, J. Math. Anal. and Appl., 125, pp. 400-450, 1987.
[79] M.C. Delfour and S.K. Mitter; Controllability and Observability for Infinite Dimensional Systems, SIAM J. Control, 10, pp. 329-333, 1972.
[80] M.C. Delfour and S.K. Mitter; Controllability, Observability and Optimal Feedback Control of Affine Hereditary Differential Systems, SIAM J. Control, 10, pp. 298-328, 1972.
[81] M.C. Delfour and S.K. Mitter; Hereditary differential systems with constant delays I; General case, J. Diff. Eqns., 12, pp. 213-235, 1972.
[82] M.C. Delfour and S.K. Mitter; Hereditary differential systems with constant delays II; A class of affine systems and the adjoint problem, J. Diff. Eqns., 18, pp. 18-28, 1975.
[83] M.C. Delfour, C. McCalla, and S.K. Mitter; Stability and Infinite Time Quadratic Cost Problem for Linear Hereditary Differential Systems, SIAM J. Control, 13, pp. 48-88, 1975.
[84] W. Desch and W. Schappacher; Spectral Properties of Finite-Dimensional Perturbed Linear Semigroups, J. Diff. Eqns., 59, pp. 80-102, 1985.
[85] C.A. Desoer, R.W. Liu, J. Murray, and R. Saeks; Feedback system design: the fractional representation approach to analysis and synthesis, IEEE Trans. Autom. Control, AC-25, pp. 399-412, 1980.
[86] J. Diestel and J.J. Uhl; Vector Measures, Mathematical surveys, number 15, A.M.S., Providence, Rhode Island, 1977.
[87] G. Doetsch; Introduction to the Theory and Application of Laplace Transform, Springer Verlag, Berlin, 1974.
[88] S. Dolecki and D. Russell; A General Theory of Observation and Control, SIAM J. Control and Optim., 15, pp. 185-220, 1977.
[89] N. Dunford and J.T. Schwartz; Linear Operators, part 1, Interscience, 1959.
[90] N. Dunford and J.T. Schwartz; Linear Operators, part 3, Interscience, 1971.
[91] H. Dym, T.T. Georgiou, and M.C. Smith; Explicit formulas for optimally robust controllers for delay systems, submitted, 1994.
[92] D.H. Eller, J.K. Aggarwal and H.T. Banks; Optimal Control of Linear Time-Delay Systems, IEEE Trans. Autom. Control, AC-14, pp. 678-687, 1969.
[93] H.O. Fattorini; Boundary Control Systems, SIAM J. Control, 6, pp. 349-388, 1968.
[94] H.O. Fattorini; On Complete Controllability of Linear Systems, J. Diff. Eqns., 3, pp. 391-402, 1967.
[95] H.O. Fattorini; On Control in Finite Time of Differential Equations in Banach Space, Comm. Pure App. Maths. XIX, pp. 17-34, 1966.
[96] H.O. Fattorini; Some Remarks on Complete Controllability, SIAM J. Control, 4, pp. 686-694, 1966.
[97] H.O. Fattorini and D.L. Russell; Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Archiv. Rat. Mech. Anal., 43, pp. 272-292, 1971.
[98] B.A. Francis; A Course in \boldsymbol{H}_{∞}-Control Theory, LNCIS Vol. 88, Springer Verlag, Berlin, 1987.
[99] D. Franke; Systeme mit Ortlich Verteilten Parametern. Eine Einfuhrung in die Modellbildung, Analyse und Regelung, Springer-Verlag, Berlin, Heidelberg, 1987.
[100] P. Fuhrman; Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York, 1981.
[101] N. Fuji; Feedback Stabilization of Distributed Parameter Systems by a Functional Observed, SIAM J. Control and Optim., 18, pp. 108-121, 1980.
[102] R. Gabasov and S.V. Curakova; The Theory of Controllability of Linear Systems with Delay Lags, Eng. Cybernetics, 4, pp. 16-27, 1969.
[103] T.T. Georgiou; On the computation of the gap metric, Systems and Control Letters, 11, pp. 253-257, 1988.
[104] T.T. Georgiou and M.C. Smith; Optimal robustness in the gap metric, IEEE Trans. Autom. Control, AC-35, pp. 673-686, 1990.
[105] T.T. Georgiou and M.C. Smith; W-stability of feedback systems, Systems and Control Letters, 13, pp. 271-277, 1989.
[106] G. Ghu, P.P. Khargonekar and E.B. Lee; Approximation of Infinite-Dimensional systems, IEEE Trans. Autom. Control, AC-34, pp. 610-618, 1989.
[107] J.S. Gibson; A Note on Stabilization of Infinite Dimensional Linear Oscillators by Compact Linear Feedback, SIAM J. Control and Optim., 18, pp. 311-316, 1980.
[108] J.S. Gibson; Linear Quadratic Control of Hereditary Differential Systems: Infinite Dimensional Riccati Equations and Numerical Approximations, SIAM J. Control and Optim., 21, pp. 95-139, 1983.
[109] J.S. Gibson; The Riccati integral equations for optimal control problems on Hilbert spaces, SIAM J. Control and Optim., 17, pp. 537-565, 1979.
[110] K. Glover; Robust Stabilization of Multivariable Linear Systems: Relations to Approximation, Int. J. Control, 43, pp. 741-766, 1986.
[111] K. Glover and D. McFarlane; Robust Stabilization of Normalized Co-prime Factor Plant Descriptions with H_{∞}-bounded Uncertainty, IEEE Trans. Automatic Control, AC-34, pp. 821-830, 1989.
[112] K. Glover, R.F. Curtain, and J.R. Partington; Realisation and Approximation of Linear Infinite Dimensional Systems with Error Bounds, SIAM J. Control and Optim., 26, pp. 863-898, 1988.
[113] K. Glover, J. Lam, and J.R. Partington; Rational Approximation of a Class of Infinite Dimensional Systems I: Singular Values of Hankel Operators, MCSS, 3, pp. 325-344, 1990.
[114] K. Glover, J. Lam, and J.R. Partington; Rational Approximation of a Class of InfiniteDimensional Systems II: Optimal convergence rates of L_{∞}-approximants, $M C S S, 4$, pp. 233-246, 1991.
[115] K. Glover, J. Lam, and J.R. Partington; Rational Approximation of a Class of Infinite Dimensional Systems III: The L_{2}-case, pp. 405-440 in Progress in Approximation Theory, eds. P. Nevai and A. Pinhaus, Academic Press, 1991.
[116] M. Grasdijk; Robust Control for the Heat Equation, M. Sc. Thesis, Mathematics Institute, University of Groningen, the Netherlands, 1990.
[117] M. Green; \boldsymbol{H}_{∞}-controller synthesis by J-lossless coprime factorization, SIAM J. Control and Optim., 30, pp. 522-547, 1992.
[118] G.M. Green, K. Glover, D. Limebeer, and J. Doyle; A J-spectral Factorization appraoch for \boldsymbol{H}_{∞}-control, SIAM J. Control and Optim., 28, pp. 1350-1371, 1990.
[119] G. Greiner, J. Voigt and M. Wolff; On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 5, pp. 245-256, 1981.
[120] R. Gressang and G. Lamont; Observers for systems characterized by semigroups, IEEE Trans. Autom. Control, AC-20, pp. 523-528, 1975.
[121] M. Greve; Robust Stabilization of a Heat Equation System, Studienarbeit, ISR, Universitat Stuttgart, Germany, 1994.
[122] G. Gripenberg, S.O. Londen, and O. Staffans; Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990.
[123] A. Halanay; On the Controllability of Linear Difference-differential Systems, in Lecture Notes in Operations Research and Mathematical Economics, 12, Springer Verlag, 1970.
[124] A. Halanay and V. Ionescu; Time-varying Discrete Linear Systems, in Operator Theory: Advances and Applications, Vol. 68, Birkhauser, Basel, 1994.
[125] J.K. Hale; Theory of Functional Differential Equations, Springer Verlag, New York, 1977.
[126] G.H. Hardy and E.M. Wright; An Introduction to the Theory of Numbers, 2nd edition, Clarendon Press, Oxford, 1945.
[127] A.J. Helmicki, C.A. Jacobson, and C.N. Nett; Fundamentals of Practical Controller Design for LTI Plants with Distributed Parameters: Part 1, Modelling and WellPosedness. Proc. 1987 American Control Conference, pp. 1203-1208, June 1987.
[128] H. Helson; Harmonic Analysis, Addison-Wesley, London, 1983.
[129] E. Hille and R.S. Phillips; Functional Analysis and Semigroups, Amer. Math. Soc. Coll. Publ., 31, Providence, R.I., 1957.
[130] M.W. Hirsch and S. Smale; Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.
[131] F. Huang; Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. of Diff. Equations, 1, pp. 43-55, 1985.
[132] F. Huang; Strong Asymptotic Stability of Linear Dynamical Systems in Banach Spaces, J. Diff. Eqns, 104, pp. 307-324, 1993.
[133] K. Ito; Finite-dimensional compensators for infinite-dimensional systems via Galerkin approximation, SIAM J. Control and Optim., 28, pp. 1251-1269, 1990.
[134] K. Ito and R.K. Powers; Chandresekar equations for infinite-dimensional systems, SIAM J. Control and Optim., 25, pp. 596-611, 1987.
[135] C.A. Jacobson and C.N. Nett; Linear State Space Systems in Infinite-Dimensional Space: the Role and Characterization of Joint Stabilizability/Detectability, IEEE Trans. Autom. Control, AC-33, pp. 541-550, 1988.
[136] N. Jacobson; Lectures in Abstract Algebra, Vol. 1, Van Nostrand, New York, 1953.
[137] R.E. Kalman, P.L. Falb, and M.A. Arbib; Topics in Mathematical Systems Theory, McGraw-Hill, 1969.
[138] E.W. Kamen, P.P. Khargonekar, and A. Tannenbaum; Proper stable Bezout factorizations and feedback control of linear time-delay systems, Int. J. Control, 43, pp. 837-857, 1986.
[139] E.W. Kamen, P.P. Khargonekar, and A. Tannenbaum; Stabilization of time-delay systems using finite-dimensional compensators, IEEE Trans. Autom. Control, AC30, pp. 75-78, 1985.
[140] T. Kato; Perturbation Theory of Linear Operators, Springer Verlag, 1966.
[141] T. Kawata; Fourier Analysis in Probability Theory, Academic Press, New York and London, 1972.
[142] B.A.M. van Keulen; \boldsymbol{H}_{∞}-control for Infinite-Dimensional Systems: a state-space approach, Birkhauser, Boston, 1993.
[143] B. van Keulen; Redheffer's Lemma and \boldsymbol{H}_{∞}-control for infinite-dimensional systems, SIAM J. Control and Optim., 32, pp. 261-278, 1994.
[144] B. van Keulen, M. Peters, and R.F. Curtain; \boldsymbol{H}_{∞} control with state feedback: the infinite-dimensional case, Journal of Mathematical Systems, Estimation and Control, 9, pp. 1-39, 1993.
[145] P.P. Khargonekar and K. Poolla; Robust Stabilization for Distributed Systems, $A u$ tomatica, 22, pp. 77-84, 1986.
[146] P.P. Khargonekar and E.D. Sontag; On the Relation Between Matrix Fraction Factorizations and Regulable Realizations of Linear Systems over Rings, IEEE Trans. Autom. Control, AC-27, pp. 627-638, 1982.
[147] F.M. Kirrillova and S.V. Curakova; Relative Controllability of Systems with Time Lag, Dokl. Akad. Nauk. USSR, 176, pp. 1260-1263, 1967.
[148] S. Kitamura, H. Sakairi, and M. Mishimura; Observers for distributed parameter systems, Electrical Eng. in Japan, 92, pp. 142-149, 1972.
[149] T. Kobayashi; Some Remarks on Controllability for Distributed Parameter Systems, SIAM J. Control and Optim., 16, pp. 733-742, 1978.
[150] M.A. Krasnosel'skii, G.M. Vainikko, and P.P. Zabreiko; Approximate Solutions of Operator Equations, Wolters-Noordhof, Groningen, 1969.
[151] N.N. Krasovskii; On Analytical Design of Optimum Regulators in Time-Delay Systems, Prikl. Mat. Mekh., 1, pp. 39-52, 1962.
[152] E. Kreyszig; Introductory Functional Analysis with Applications, John Wiley \& Sons, New York, 1978.
[153] C.R. Kuiper and H.J. Zwart; Solutions of the ARE in terms of the Hamiltonian for Riesz-spectral systems, in R.F. Curtain (Ed.), A. Bensoussan, J.L. Lions (Honorary Eds.) Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems, Proceedings of the 10th International Conference, Sophia-Antipolis, France, June, 1992, pp. 314-325, Lecture Notes in Control and Information Sciences, Vol. 185, Springer Verlag, Berlin, 1993.
[154] H.J. Kushner and D.I. Barnea; On the control of a linear functional differential equation with quadratic cost, SIAM J. Control, 8, pp. 257-272, 1970.
[155] L. Lasiecka and R. Triggiani; Differential and Algebraic Riccati Equations with Applications to Boundary Point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Information Sciences, vol. 164. Springer Verlag, Berlin, 1991.
[156] N. Levison and R.M. Redheffer; Complex Variables, Holden-Day, Inc., San Francisco, 1970.
[157] J.L. Lions; Contrble Optimal de systemes gouvernes par des equations and derivees partielles, Dunod, Paris, 1968. (English Translation, Springer Verlag, Berlin, New York, 1971).
[158] J.L. Lions; Sur le controle optimal de systemes decrits par des equations aux derivees partielles lineaires, C.R. Acad. Sc. Paris, 263, pp. 661-663, pp. 713-715, pp. 776779, 1966.
[159] J.L. Lions and E. Magenes; Non-Homogeneous Boundary Value Problem, I, II, III, Springer Verlag, 1972.
[160] H. Logemann; Circle criteria, small-gain conditions and internal stability for infinitedimensional systems, Automatica, 27, pp. 677-690, 1991.
[161] H. Logemann; Finitely generated ideals in certain algebras of transfer functions of infinite-dimensional systems, Int. J. Control, 45, pp. 247-250, 1987.
[162] H. Logemann; Funktionentheoretische Methoden in der Regelungstheorie Unendlichdimensionaler Systeme, Ph.D. thesis, 1986, Report nr. 156, Institut fur Dynamsiche Systeme, Universitat Bremen, West Germany.
[163] H. Logemann; On the Existence of Finite-Dimensional Compensators for Retarded and Neutral Systems, Int. J. Control, 43, pp. 109-121, 1986.
[164] H. Logemann; On the Nyquist criterion and robust stabilization for infinitedimensional systems, pp. 631-638 in: Proc. of the Int. Symposium MTNS-89, Vol. 2 (edited by M.A. Kaashoek, J.H. van Schuppen and A.C.M. Ran), Birkhauser, Boston, 1990.
[165] H. Logemann; On the Transfer Matrix of a Neutral System: Characterizations of Exponential Stability in Input-Output Terms. Systems and Control Letters, 9, pp. 393-400, 1987.
[166] H. Logemann; Stability and stabilizability of linear infinite-dimensional discretetime systems, IMA Journal of Mathematical Control \& Information, 9, pp. 255-263, 1992.
[167] H. Logemann; Stabilization and Regulation of Infinite-Dimensional Systems using Coprime Factorizations, pp. 102-139 in Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems, R.F. Curtain (ed), A. Bensoussan and J.L. Lions (Honorary eds.), Lecture Notes in Control and Information Sciences, Vol. 185, Springer Verlag, Berlin, 1993.
[168] H. Logemann, R. Rebarber, and G. Weiss; Conditions for Robustness and nonrobustness of the stability of feedback systems with respect to small delays in the loop, Report 285, Institut fur Dynamische Systeme, Universitat Bremen, Germany, 1993.
[169] J.C. Louis and D. Wexler; On Exact Controllability in Hilbert Spaces, J. Diff. Eqns., 49, 258-269, 1983.
[170] J.C. Louis and D. Wexler; The Hilbert space regulator problem and operator Riccati equation under stabilizability, Annales de la Societe Scientifique de Bruxelles, T. 105, 4, pp. 137-165, 1991.
[171] D.L. Lukes and D.L. Russel; The Quadratic Criterion for Distributed Systems, SIAM J. Control, 7, pp. 101-121, 1969.
[172] G. Lumer and R.S. Phillips; Dissipative operators in a Banach space, Pacific J. Math., 11, pp. 679-698, 1961.
[173] S. MacLane and G. Birkhoff; Algebra, MacMillan, New York, 1965.
[174] P.M. Makila; Laguerre series approximation of infinite-dimensional systems, Automatica, 26, pp. 985-996, 1990.
[175] A. Manitius; Optimal control of time-lag systems with quadratic performance indices, Proc. fourth IFAC Congress, Warsaw, Session no. 13, pp. 16-28, 1969.
[176] A. Manitius; Necessary and sufficient conditions of approximate controllability for general linear retarded systems, SIAM J. Control and Optim., 19, pp. 516-532, 1981.
[177] A. Manitius and R. Triggiani; Controllability, Observability and Stabilizability of Retarded Systems, Proc. IEEE Conference on Decision and Control, 1976.
[178] A. Manitius and R. Triggiani; Function Space Controllability of Linear Retarded Systems: A Derivation from Abstract Operator Conditions, SIAM J. Control and Optim., 16, pp. 599-645, 1978.
[179] A. Manitius and R. Triggiani; Sufficient Conditions for Function Space Controllability and Feedback Stabilizability of Linear Retarded Systems, IEEE Trans. Autom. Control, AC-23, pp. 659-665, 1978.
[180] M. Marcus; Introduction to Modern Algebra, Marcel Dekker, Inc., New York, 1978.
[181] Mathematica, developed and copyright by Wolfram Research Inc., Champaign, Illinois, 1994.
[182] MATLAB, developed and copyright by The MathWorks Inc., Natick, Mass., 1994.
[183] D. McFarlane and K. Glover; Robust Controller Design using Normalized Coprime Factor Plant Description, Lecture Notes in Control and Information Sciences, Vol. 138, Springer Verlag, 1989.
[184] V.J. Mizel and T.I. Seidman; Observation and Prediction for the Heat Equation. J. Math. Anal. Appl., 28, pp. 303-312, 1969; 38, pp. 149-166, 1972.
[185] A.S. Morse; System invariants under feedback and cascade control, Proc. Int. Conf. on Math. Syst. Theory, Udine, Italy, 1976.
[186] S. Mossaheb; On the existence of right coprime factorizations for functions meromorphic in a half-plane, IEEE Trans. Autom. Control, AC-25, pp. 550-551, 1980.
[187] A.W. Naylor and G.R. Sell; Linear Operator Theory in Engineering and Science, Holt, Rinehart and Winston, Inc., New York, 1971.
[188] S.A. Nefedov and F.A. Sholokhovich; A Criterion for the Stabilizability of Dynamical Systems with Finite-Dimensional Input, Differentsial'nye Uravneniya, New York, Plenum, 22, 1986, pp. 163-166, 1986.
[189] C.N. Nett; The Fractional Representation Aproach to Robust Linear Feedback Design: A Self-Contained Exposition, M.Sc. Thesis, Dept. of ECSE, Rensselaer Polytechnic Institute, Troy, N.Y., USA, 1984.
[190] C.N. Nett, C.A. Jacobson, and M.J. Balas; A Connection Between State Space and Doubly Coprime Fractional Representations, Trans. IEEE Autom. Control, AC-9, pp. 831-832, 1984.
[191] C.N. Nett, C.A. Jacobson, and M.J. Balas; Fractional Representation Theory: Robustness with Applications to Finite-Dimensional Control of a Class of Linear Distributed Systems, Proc. 22th IEEE Conf. on Decision and Control, pp. 268-280, 1983.
[192] R. Ober and S. Montgomery-Smith; Bilinear Transformation of Infinite-Dimensional State-Space Systems and Balanced Realisation of Nonrational Transfer Function. SIAM J. Control and Optim., 6, pp. 438-465, 1990
[193] A.W. Olbrot; Stabilizability, Detectability and Spectrum Assignment for Linear Autonomous Systems with General Time Delays, IEEE Trans. Autom. Control, AC-23, pp. 887-890, 1978.
[194] P.A. Orner and A.M. Foster; A design procedure for a class of distributed parameter control systems, Trans. A.S.M.E. Series G Journal of Dynamical Systems, Measurement \& Control, 93, pp. 86-93, 1971.
[195] L. Pandolf; Generalized control systems, boundary control systems, and delayed control systems, MCSS, 3, pp. 165-181, 1990.
[196] L. Pandolf; On feedback stabilization of functional differential equations, Boll. UHI 4, Il Supplemento al Fascicolo 3, Ser. IV, Vol. XI, pp. 626-635, 1975.
[197] J.R. Partington; An introduction to Hankel operators, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1988.
[198] J.R. Partington; Approximation of unstable infinite-dimensional systems using coprime factors, Systems and Control Letters, 16, pp. 89-96, 1991.
[199] J.R. Partington and K. Glover; Robust stabilization of delay systems by approximation of the coprime factors, Systems and Control Letters, 14, pp. 325-332, 1990.
[200] J.R. Partington, K. Glover, H.J. Zwart, and R.F. Curtain; \boldsymbol{L}_{∞}-Approximation and Nuclearity of Delay Systems, Systems and Control Letters, 10, pp. 59-65, 1988.
[201] A. Pazy; Asymptotic behavior of the solution of an abstract evolution equation and some applications, J. Diff. Eqns., 4, pp. 493-509, 1968.
[202] A. Pazy; On the applicability of Lyapunov's theorem in Hilbert spaces, SIAM J. Math. Anal., 3, pp. 291-295, 1972.
[203] A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983.
[204] S.C. Power; Hankel Operators on Hilbert Space, Pitman, 1982.
[205] A.J. Pritchard; Stability and Control of Distributed Systems, Proc. IEEE, pp. 14331438, 1969.
[206] A.J. Pritchard; Stability and Control of Distributed Systems governed by Wave Equations, Proc. IFAC Conference on Distributed Parameter Systems, Banff, Canada, 1971.
[207] A.J. Pritchard and D. Salamon; The linear quadratic optimal control problem for infinite-dimensional systems II: retarded system with delays in control and observation, IMA J. Math. Inf., 2, pp. 335-362, 1985.
[208] A.J. Pritchard and D. Salamon; The Linear Quadratic Optimal Control Problem for Infinite Dimensional Systems with Unbounded Input and Output Operators, SIAM J. Control and Optim., 25, pp. 121-144, 1987.
[209] A.J. Pritchard and J. Zabczyk; Stability and Stabilizability of Infinite Dimensional Systems, SIAM Review, 23, 1981.
[210] J. Pruss; On the spectrum of C_{0}-semigroups, Trans. Am. Math. Soc., 284, pp. 847856, 1984.
[211] K.M. Przyluski; The Lyapunov equations and the problem of stability for linear bounded discrete-time systems in Hilbert space, Appl. Math. Optim., 6, pp. 97-112, 1980.
[212] W.H. Ray; Advanced Process Control, McGraw-Hill, New York, London, 1981.
[213] R. Rebarber; Conditions for equivalence of internal and external stability for distributed parameter systems, Trans. Autom. Control, AC-38, pp. 994-998, 1993.
[214] R. Rebarber; Necessary conditions for exponential stabilizability of distributed parameter systems with infinite-dimensional unbounded control, Systems and Control Letters, 14, pp. 241-248, 1990.
[215] R. Rebarber; Spectral Assignability for Distributed Parameter Systems with Unbounded Scalar Control, SIAM J. Control and Optim., 27, pp. 148-169, 1989.
[216] R.M. Redheffer; On a certain linear fractional transformation, J. Math. and Physics, 39, pp. 269-286, 1960.
[217] M. Rosenblum and J. Rovnyak; Hardy Classes and Operator Theory, Oxford University Press, New York, 1985.
[218] D.W. Ross and I. Flugge-Lotz; An Optimal Control Problem for Systems with Differential-difference Equation Dynamics, SIAM J. Control, 7, pp. 609-623, 1969.
[219] W. Rudin; Functional Analysis, McGraw-Hill Book Company, New York, 1973.
[220] W. Rudin; Principals of Mathematical Analysis, third edition, McGraw-Hill Book Company, New York, 1976.
[221] W. Rudin; Real and Complex Analysis, second edition, McGraw-Hill Book Company, New York, 1974.
[222] D.L. Russell; A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. App. Math., LII, 3, pp. 189-211, 1973.
[223] D.L. Russell; Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems. J. Math. Anal. and Appl., 62, pp. 182-255, 1968.
[224] D.L. Russell; Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl., 40, pp. 336-368, 1972.
[225] D.L. Russell; Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems, SIAM Review, 20, pp. 639-739, 1978.
[226] D.L. Russell; Linear stabilization of the linear oscillator in Hilbert space, J. Math. Anal. Appl., 25, pp. 663-675, 1969.
[227] Y. Sakawa; Feedback control of second order evolution equations with damping, SIAM J. Control and Optim., 22, pp. 343-361, 1984.
[228] Y. Sakawa; Observability and Related Problems for Partial Differential Equation of Parabolic Type, SIAM J. Control, 13, pp. 14-27, 1975.
[229] Y. Sakawa and T. Matsushita; Feedback stabilization for a class of distributed systems and construction of a state estimator, IEEE Trans. Autom. Control, AC-20, pp. 748753, 1975.
[230] D. Salamon; Control and Observation of Neutral Systems, Research Notes in Mathematics no. 91, Pitman Advanced Publishing Program, Boston, 1984.
[231] D. Salamon; Infinite-Dimensional Linear Systems with Unbounded Control and Observation: A Functional Analytic Approach, Trans. Amer. Math. Soc., 300, pp. 383-431, 1987.
[232] D. Salamon; Realization Theory in Hilbert Space, Math. Systems Theory, 21, pp. 147-164, 1989.
[233] J.M. Schumacher; A direct approach to compensator design for distributed parameter systems, SIAM J. Control and Optim., 21, pp. 823-836, 1983.
[234] J.M. Schumacher; Dynamic Feedback in Finite and Infinite-Dimensional Linear Systems, Mathematical Centre Tracts No. 143, Mathematical Centrum, Amsterdam, 1981.
[235] B. Schwartz and A. Zaks; Contraction of the matrix unit disk, Linear Alg. Appl., 84, pp. 353-357, 1986.
[236] B. Schwartz and A. Zaks; Matrix Mobius transformations, Comm. Algebra, 9, pp. 1913-1968, 1981.
[237] M. Slemrod; A Note on Complete Controllability and Stabilizability of Linear Control Systems in Hilbert Space. SIAM J. Control, 12, pp. 500-508, 1974.
[238] M. Sorine; Sur l'equation de Riccati stationaire associee au probleme de controle d'un systeme parabolique, C.R. Acad. Sc. Paris, t. 287, Serie A-445, pp. 445-448, 1978.
[239] S.H. Sun; On spectrum distribution of complete controllable systems, SIAM J. Control and Optim., 19, pp. 730-743, 1981.
[240] H. Tanabe; Equations of Evolution, Pitman, 1979.
[241] A.E. Taylor; Introduction to Functional Analysis, John Wiley, 1958.
[242] E.G.F. Thomas; Totally summable functions with values in locally convex spaces, in A. Bellow and D. Kolzow (eds), Measure Theory, Proceedings of the conference held in Oberwolfach, 15-21 June, 1975, pp. 117-131, Lecture Notes in Mathematics, Vol. 541, Springer Verlag, Berlin, 1976.
[243] E.G.F. Thomas; Vector valued integration with applications to the operator valued \boldsymbol{H}_{∞} space, Report W-9413, Mathematics Institute, University of Groningen, the Netherlands, 1994.
[244] R. Triggiani; Extension of Rank Conditions for Controllability and Observability to Banach Spaces and Unbounded Operators, SIAM J. Control, 14, pp. 313-338, 1976.
[245] R. Triggiani; Lack of uniform stabilizabilization for noncontractive semigroups under compact preturbations, Proc. Amer. Math. Soc., 105, pp. 375-383, 1989.
[246] R. Triggiani; On a Lack of Exact Controllability for Mild Solutions in Banach Space, J. Math. Anal. Appl., 50, pp. 438-446, 1975.
[247] R. Triggiani; On the Stabilization Problem in Banach Space, J. Math. Anal. Appl., 52, pp. 383-403, 1975.
[248] K. Tsujioka; Remarks on Controllability of Second Order Evolution Equations in Hilbert Spaces, SIAM J. Control, 8, pp. 90-99, 1970.
[249] M. Vidyasagar; Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, Mass., USA, 1985.
[250] M. Vidyasagar and H. Kimura; Robust Controllers for Uncertain Linear Multivariable Systems, Automatica, 22, pp. 85-94, 1986.
[251] M. Vidyasagar, H. Schneider, and B.A. Francis; Algebraic and Topological Aspects of Feedback Stabilization, IEEE Trans. Autom. Control, AC-27, pp. 880-894, 1982.
[252] J.A. Walker; On the application of Lyapunov's direct method to linear dynamical systems, J. Math. Analysis and Appl., 53, pp. 187-220, 1976.
[253] P.K.C. Wang; Modal Feedback Stabilization of a Linear Distributed System, IEEE Trans. Autom., AC-17, pp. 552-553, 1972.
[254] J. Weidmann; Linear Operators in Hilbert Spaces, Springer Verlag, New York, 1980.
[255] G. Weiss; Admissibility of Unbounded Control Operators, SIAM J. Control and Optim., 27, pp. 527-545, 1989.
[256] G. Weiss; The Representation of Regular Linear Systems on Hilbert Spaces, in Control and Estimation of Distributed Parameter Systems, Proceedings of the 4th International Conference on Control of Distributed Parameter Systems, Vorau, July 1988, F. Kappel, K. Kunisch and W. Schappacher (eds), pp. 401-416, International Series of Numerical Mathematics, vol. 91, Birkhauser, Basel, 1989.
[257] G. Weiss; Transfer functions of regular systems, Part 1: Charterization of regularity, Trans. Amer. Math. Soc., vol. 342, pp. 827-854, 1994.
[258] M. Weiss; Riccati Equations in Hilbert spaces: A Popov function approach, Ph. D. Thesis, Rijksuniversiteit Groningen, the Netherlands, 1994.
[259] D. Wexler; On frequency domain stability for evolution equations in Hilbert spaces, via the algebraic Riccati equation, SIAM J. Math. Anal., 11, pp. 969-983, 1980.
[260] W.M. Wonham; Linear Multivariable Control; A Geometric Approach, Springer Verlag, New York, 1974.
[261] V.A. Yakubovich; A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an application to some problems in the synthesis of optimal control, I, Siberian Math. J., 15, pp. 457-476, 1974.
[262] V.A. Yakubovich; A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an application to some problems in the synthesis of optimal control, II, Siberian Math. J., 16, pp. 828-845, 1975.
[263] Y. Yamamoto; Equivalence of internal and external stability for a class of distributed systems, MCSS, 4, pp. 391-409, 1991.
[264] K. Yosida; Functional Analysis, Springer Verlag, 1966.
[265] Y.N.J. Young; The Nehari Problem and Optimal Hankel norm approximation, pp. 199-221 in Analysis and Optimization of Systems: State and Frequency Domain Approaches to Infinite-Dimensional Systems, R.F. Curtain (ed.), A. Bensoussan and J.L. Lions (Honorary Eds.), Lecture Notes in Control and Information Sciences, Vol. 185, Springer Verlag, Berlin, 1993.
[266] J. Zabczyk; A Note on C_{0}-Semigroups, Bull. l'Acad. Pol. de Sc. Serie Math., 23, pp. 895-898, 1975.
[267] J. Zabczyk; On optimal stochastic control of discrete-time systems in Hilbert space, SIAM J. Control and Optim., 13, pp. 1217-1234, 1975.
[268] J. Zabczyk; Remarks on the Control of Discrete Time Distributed Parameter Systems, SIAM J. Control, 12, pp. 721-735, 1974.
[269] J. Zabczyk; Remarks on the Algebraic Riccati Equation in Hilbert Space, J. Appl. Math. and Optimization, 3, pp. 251-258, 1976.
[270] J. Zabczyk; Stabilization of Boundary Control Systems, J. Diff. Eqns., 32, 1979.
[271] G. Zames; Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses, IEEE Trans. Autom. Control, AC-26, pp. 301-320, 1981.
[272] O. Zariski and P. Samuel; Commutative Algebra, Vol. 1, Van Nostrand, New York, 1958.
[273] E. Zauderer; Partial Differential Equations of Applied Mathematics, John Wiley \& Sons, New York, 1989.
[274] S.Q. Zhu; Robustness of Feedback Stabilization: A Topological Approach, Ph.D. Thesis, University of Eindhoven, The Netherlands, 1989.
[275] H.J. Zwart; Geometric Theory for Infinite-Dimensional Systems, Lecture Notes in Control and Information Sciences, Vol. 115, Springer-Verlag, Berlin, 1989.
[276] H.J. Zwart, R.F. Curtain, J.R. Partington, and K. Glover; Partial Fraction Expansions for Delay Systems, Systems and Control Letters, 10, pp. 235-244, 1988.

Notation

Symbol Meaning Page

* $\quad h * g$, convolution product of h and g 637
\breve{h}, Fourier transform of h 637
$\dagger \quad F^{\dagger}(s):=F(-\bar{s})^{*}$ 415
$\diamond \quad u \diamond v$, concatenation of u and v at τ 175
$\oplus \quad Z_{1} \oplus Z_{2}$, direct sum of Z_{1} and Z_{2} 578
$>\quad Q_{1}>Q_{2}$, operator Q_{1} larger than Q_{2} 606
$\geq \quad Q_{1} \geq Q_{2}$, operator Q_{1} larger than or equal to Q_{2} 606
\hat{h}, Laplace transform of h 635
$\langle\cdot, \cdot\rangle \quad\langle u, v\rangle$, inner product of u and v 576
$\|\cdot\| \quad\|z\|$, norm of z 572
closure of the set V 574
$\perp \quad V^{\perp}$, orthogonal complement of V $x \perp y, \Leftrightarrow\langle x, y\rangle=0$ 578
, $\quad X^{\prime}$, dual space or dual operator of X 589, 594
" $\quad X^{\prime \prime}$, second dual of X 592
* Q^{*}, adjoint operator of Q 601
$\hookrightarrow \quad V \subset X$, continuous and dense injection 585
$\mathcal{A}(\beta) \quad$ convolution algebra 661
$\hat{\mathcal{A}}(\beta) \quad$ set of Laplace transforms of $\mathcal{A}(\beta)$ 665
$\hat{\mathcal{A}}(\beta) \quad$ union of $\hat{\mathcal{A}}\left(\beta_{1}\right)$ over $\beta_{1}<\beta$ 338
$\hat{\mathcal{A}}_{\infty}(\beta) \quad$ set of functions in $\hat{\mathcal{A}}_{-}(\beta)$ that are
bounded away from zero at infinity in $\overline{\mathbb{C}_{\beta}^{+}}$ 338
$\mathcal{B}^{\tau} \quad$ controllability map on $[0, \tau]$ 143

Symbol	Meaning	Page
\mathcal{B}^{∞}	controllability map on $[0, \infty)$	159
$\hat{\mathcal{B}}(\beta)$	$\hat{\mathcal{A}}_{-}(\beta)\left[\hat{\mathcal{A}}_{\infty}(\beta)\right]^{-1}$	340
C	set of complex numbers	
$\mathbb{C}(s)$	class of rational functions	653
$\mathbb{C}_{p}(s)$	class of proper rational functions	653
\underline{C}^{+}	all complex numbers with real part larger than β	636
$\overline{\mathbb{C}_{\beta}^{+}}$	all complex numbers with real part larger than or equal to β	635
\mathbb{C}_{β}^{-}	all complex numbers with real part less than β	229
$C[0,1]$	class of continuous functions from $[0,1] \text { to } \mathbb{C}$	
$\boldsymbol{C}([a, b] ; X)$	class of continuous functions from	
	[a, b] to X	586
$C^{1}([0, \tau] ; Z)$	class of continuously differentiable	
	functions from $[0, \tau]$ to Z	101
$\mathcal{C}^{\text {r }}$	observability map on [0, $\tau]$	154
\mathcal{C}^{∞}	observability map on $[0, \infty)$	159
D(T)	domain of T	582
D	unit disc	450
$\mathcal{F}_{L}(P, Q)$	lower linear fractional transformation	430
$\mathcal{F}_{U}(P, Q)$	upper linear fractional transformation	430
H_{G}	Hankel operator associated with symbol G	387
\boldsymbol{H}_{∞}	Hardy space of bounded holomorphic functions on \mathbb{C}_{0}^{+}with values in \mathbb{C}	643
$\boldsymbol{H}_{\infty}(\mathbb{D})$	Hardy space of bounded holomorphic function on \mathbb{D} with values in \mathbb{C}	450
$\boldsymbol{H}_{\infty}\left(\mathbb{D} ; \mathbb{C}^{k \times m}\right)$	Hardy space of bounded holomorphic function on \mathbb{D} with values in $\mathbb{C}^{k \times m}$	450
$\boldsymbol{H}_{\infty}(X)$	Hardy space of bounded holomorphic functions on \mathbb{C}_{0}^{+}with values in X	643
$\boldsymbol{H}_{\infty}^{-}(\beta)$	subset of \boldsymbol{H}_{∞}	377
$\boldsymbol{H}_{\infty}\left[\boldsymbol{H}_{\infty}\right]^{-1}$	quotient field of \boldsymbol{H}_{∞}	654
H_{2}	Hardy space of square integrable functions on \mathbb{C}_{0}^{+}with values in \mathbb{C}	643
$\mathrm{H}_{2}(\mathbb{D})$	Hardy space of square intergrable	
	functions on \mathbb{D} with values in \mathbb{C}	450
$\boldsymbol{H}_{2}\left(\mathbb{D} ; \mathbb{C}^{m}\right)$	Hardy space of square intergrable functions on \mathbb{D} with values in \mathbb{C}^{m}	450
$\mathrm{H}_{2}(\mathrm{Z})$	Hardy space of square integrable	
	functions on \mathbb{C}_{0}^{+}with values in Z	643
I_{δ}	approximate identity	534
$J\left(z_{0} ; t_{0}, t_{e}, u\right)$	cost functional on the interval [$\left.t_{0}, t_{e}\right]$	269
ker T	kernel of T	583
L_{B}^{τ}	controllability gramian of $\Sigma(A, B,-)$ on $[0, \tau]$	144
L_{C}^{τ}	observability gramian of $\Sigma(A,-, C)$ on $[0, \tau]$	154

Symbol	Meaning	Page		
$L(\Omega ; Z)$	class of Lebesgue measurable functions			
	from Ω to Z	626		
$\boldsymbol{L}_{\infty}(a, b)$	class of bounded measurable functions			
	from $[a, b]$ to \mathbb{C}	573		
$L_{\infty}(\Omega ; Z)$	class of bounded measurable functions			
	from Ω to Z	626		
$L_{\infty}\left(\partial \mathbb{D} ; \mathbb{C}^{k \times m}\right)$	class of bounded measurable functions			
	from $2 \mathbb{D}$ to $\mathbb{C}^{k \times m}$	450		
$L_{p}(a, b)$	class of Lebesgue measurable complex-			
	valued functions with $\int_{a}^{b}\|f(t)\|^{p} d t<\infty$	573		
$L_{p}(\Omega ; Z)$	class of Lebesgue measurable Z-valued			
	functions with $\int_{\Omega}\|f(t)\|^{p} d t<\infty$	626		
$L_{2}((-\jmath \infty, j \infty) ; Z)$	$L_{p}(\Omega ; Z)$ with $p=2$ and $\Omega=(-\jmath \infty, j \infty)$	639		
$L_{2}(2 \mathrm{D})$	$L_{p}(\Omega ; Z)$ with $p=2, \Omega=\partial \mathbb{D}$ and $Z=\mathbb{C}$	450		
$L_{2}\left(\partial \mathbb{D} ; \mathbb{C}^{m}\right)$	$L_{p}(\Omega ; Z)$ with $p=2, \Omega=\partial \mathbb{D}$ and $Z=\mathbb{C}^{m}$	450		
$\boldsymbol{L}_{2}^{\text {loc }}([0, \infty) ; U)$	class of functions which are in			
	$L_{2}((a, b) ; U)$ for all $a, b \in[0, \infty)$	175		
$\mathcal{L}(X)$	bounded linear operators from X to X	584		
$\mathcal{L}(X, Y)$	bounded linear operators from X to Y	584		
ℓ_{p}	complex-valued sequences with			
	$\sum^{\infty}\left\|x_{n}\right\|^{p}<\infty$	572		
	$\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$			
ℓ_{∞}	bounded complex-values sequences	573		
$\mathcal{M A}$	class of matrices with elements in \mathcal{A}	656		
$\mathcal{M} \hat{\mathcal{A}}(\beta)$	class of matrices with elements in $\hat{\mathcal{A}}(\beta)$	349		
$\mathcal{M} \hat{\mathcal{A}}_{-}(\beta)$	class of matrices with elements in $\hat{\mathcal{A}}_{-}(\beta)$	349		
$\mathcal{M} \hat{\mathcal{B}}(\beta)$	class of matrices with elements in $\hat{\mathcal{B}}(\beta)$	349		
$\boldsymbol{M}_{2}\left(\left[-h_{p}, 0\right] ; \mathbb{C}^{n}\right)$	$\mathbb{C}^{n} \oplus \boldsymbol{L}_{2}\left(\left(-h_{p}, 0\right) ; \mathbb{C}^{n}\right)$	56		
\mathcal{N}	nonobservable subspace	157		
\mathbb{N}	set of positive integers			
$\boldsymbol{P}\left(\Omega ; \mathcal{L}\left(Z_{1}, Z_{2}\right)\right)$	class of weakly measurable			
	functions from Ω to $\mathcal{L}\left(Z_{1}, Z_{2}\right)$	626		
$\boldsymbol{P}_{p}\left(\Omega ; \mathcal{L}\left(Z_{1}, Z_{2}\right)\right)$	functions in $\boldsymbol{P}\left(\Omega ; \mathcal{L}\left(Z_{1}, Z_{2}\right)\right.$ with			
	$\int_{\Omega}\\|F(t)\\|^{p} d t<\infty$	626		
$\boldsymbol{P}_{\infty}\left(\Omega ; \mathcal{L}\left(Z_{1}, Z_{2}\right)\right)$	class of bounded weakly measurable			
	functions from Ω to $\mathcal{L}\left(Z_{1}, Z_{2}\right)$	626		
$\boldsymbol{P}_{\infty}((-\jmath \infty, \jmath \infty) ; \mathcal{L}(U, Y))$	class of weakly measurable bounded			
	functions from $(-\jmath \infty, \jmath \infty)$ to $\mathcal{L}(U, Y)$	639		
\mathbb{R}	the set of real numbers			
\mathcal{R}	reachable subspace	157		
$\mathcal{R}(\beta)$	β-stable, proper, rational functions	653		
$\mathcal{R}^{r}(\beta)$	β-stable, real, proper, rational functions	653		
$\mathcal{R}_{\infty}(\beta)$	β-stable, biproper, rational functions	653		
$\mathcal{R}_{\infty}^{r}{ }^{(\beta)}$	β-stable, real, biproper, rational functions	653		

Symbol	Meaning	Page
$\mathbb{R}(s)$	real, rational functions	653
$\mathbb{R}_{p}(s)$	real, proper, rational functions	653
$\operatorname{ran} T$	range of the operator T	582
$r_{\sigma}(T)$	spectral radius of T	614
$u^{\text {min }}\left(\cdot ; z_{0}, t_{0}, t_{e}\right)$	optimal input trajectory	272
$y^{\text {min }}\left(\cdot ; z_{0}, t_{0}, t_{e}\right)$	optimal output trajectory	272
\mathbb{Z}	set of integers	
$z^{\min }\left(\cdot ; z_{0}, t_{0}, t_{e}\right)$	optimal state trajectory	272
$\partial \mathbb{D}$	unit circle	450
$\vec{\delta}_{T}\left(G, G_{\Delta}\right)$	directed gap	558
$\Delta(\lambda)$	characteristic function of delay system	58
Γ_{h}	Hankel operator associated with impulse response h	396
$\rho(A)$	resolvent set of A	608
$\rho_{\infty}(A)$	component of $\rho(A)$ that contains an interval $[r, \infty), r \in \mathbb{R}$	70
$\Sigma(A, B, C, D)$	state linear system	141
$\Sigma(A, B, C)$	state linear system with $D=0$	141
$\Sigma(A, B,-)$	state linear system with C undefined	141
$\Sigma(A,-, C)$	state linear system with B undefined	141
$\Sigma_{d}(A, B, C, D)$	discrete-time state linear system	211
$\sigma(A)$	spectrum of A	610
$\sigma_{c}(A)$	continuous spectrum of A	610
$\sigma_{p}(A)$	point spectrum of A	610
$\sigma_{r}(A)$	residual spectrum of A	610
$\sigma_{\delta}^{+}(A)$	$\sigma(A) \cap \overline{\mathbb{C}_{\delta}^{+}}$	229
$\sigma_{\delta}^{-}(A)$	$\sigma(A) \cap \mathbb{C}_{\delta}^{-}$	229

Index

A

abstract boundary control problems, 122
abstract differential equation, 101
abstract evolution equation, 101
abstract linear system, 176
addition, 571
additive perturbation
weighted, 551
additive uncertainty, 470
adjoint operator, 601, 603
admissible perturbation, see ε-admissible perturbation
A-invariant, 69
algebra, 651
algebraic inverse, 583
algebraic Riccati equation, 293
discrete-time, 331
equivalent form, 306
for $\Sigma(A, B, C, D), 302$
relation with dissipative inequality, 319
relation with Hamiltonian, 319
relation with spectral factorization, 319
unbounded solution, 307
almost periodic, 666
analytic, 565
antistable, 6, 387
approximate identity, 534, 560
approximately controllable, 144, 157
discrete-time, 212
for boundary control system, 201
for delay system, 171
for Riesz-spectral system, 164
for self-adjoint generator, 162
approximately observable, 154,157
discrete-time, 212
for delay system, 167
for Riesz-spectral system, 164
for self-adjoint generator, 163
approximation
in $H_{\infty}, 667$
in $\boldsymbol{L}_{\infty}, 640$
of holomorphic functions, 568
truncated balanced, 446
approximation error, 246
ARE, see algebraic Riccati equation associative, 649
associative property, 571

B

balanced realization, 8
Banach algebra, 651
Banach space, 575

Banach Steinhaus theorem, 586
basis, 579
beam equation, 90
C_{0}-semigroup, 91
boundary control, 138, 207
Riesz-spectral generator, 91
β-exponentially detectable, 227
β-exponentially stabilizable, 227
β-exponentially stable, 215
β-input-output stable, 538
of \boldsymbol{H}_{∞}-configuration, 466
of feedback system, 458
of transfer function, 457
β-stabilizing controller, 458
Bezout identity, 344, 352, 655, 660
biorthogonal, 38
biorthogonal sequence, 38
biproper, 653
Bochner integrals, 622
boundary control system, 122, 201-210
approximately controllable, 201
exponentially detectable, 264
exponentially stabilizable, 263
spectrum determined growth assumption, 263
transfer function, 207
boundary operator, 122
bounded
operator, 583
set, 574
bounded algebraic inverse, 609
bounded away from zero at infinity in $\overline{\mathbb{C}_{\beta}^{+}}, 338$
bounded inverse, 609
bounded linear functional, 588
bounded linear operator, 583

C

Callier-Desoer class, 340
invertibility, 348
cascade connection, 336
Cauchy sequence, 574
Cauchy's residue theorem, 568
Cauchy's theorem, 567, 635
Cauchy-Riemann equations, 380
Cauchy-Schwarz inequality, 576
central controller, 491, 527
circle criterion, 254
classical solution, 80, 121
on $[0, \infty), 101$
on $[0, \tau], 101$
closed
operator, 595
set, 574
closed curve, 566
closed graph theorem, 597
closed-loop system, 246
closure, 574
co-inner, 358, 382
coercive, 606
colocated, 385
commutative, 649,651
commutative property, 571
commutative ring, 649
compact
operator, 587
set, 574
compact, normal resolvent, 619
compensator, 246
finite-dimensional, see rational controller
complete, 575
completion, 575
complex vector space, 571
concatenation, 175
continuous, 586
strongly, 586
uniformly, 586
continuous at $x_{0}, 583$
continuous embedding, 585
continuous on $\boldsymbol{D}(F), 583$
continuous spectrum, 610
continuously initially observable, see exactly observable
contour, 566
closed, 566
positively oriented, 567
simple, 566
contraction mapping theorem, 581
contraction semigroup, 32
control sensitivity function, 553
controllability, 143
controllability gramian, 6, 144
discrete-time, 212
extended, 159
controllability map, 5, 143, 176
discrete-time, 211
extended, 159
controllable, 5, 143
approximately, 144
exactly, 144
exactly null, 153
controller
rational, see rational controller
convergence
strong, 586
uniform, 585
weak, 593
converges, 574
convolution algebra, 662
convolution product, 637, 662
coprime, 655,660
left, 660
left-
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 352$
over $\hat{\mathcal{A}}(\beta), 665$
over $\hat{\mathcal{A}}_{-}(\beta), 344$
right, 660
right-
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 352$
coprime factorization
doubly
of $\Sigma(A, B, C, D), 370$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 357$
left-
of $\Sigma(A, B, C, D), 368$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 353$
normalized doubly
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
normalized leftof $e^{-\alpha s} G_{0}(s), 381$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
normalized right-
of $\Sigma(A, B, C, D), 371$
of $e^{-\alpha s} G_{0}(s), 380$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
right-
of $\Sigma(A, B, C, D), 366$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 353$
cost functional, 269, 329
costate, 318
curve
closed, 566
rectifiable, 566
simple, 566
C_{0}-semigroup, 15
bounded generator, 16
contraction, 32
dual, 37
growth bound, 18
holomorphic, 88
infinitesimal generator, 20
measurable, 622
perturbed, 110,119

D

decay rate, 215
delay equation/system, $53,96,115,141$
C_{0}-semigroup, 56
β-exponentially detectable, 242
β-exponentially stabilizable, 242
β-exponentially stable, 224
approximately controllable, 171
approximately observable, 167
infinitesimal generator, 60 spectrum, 60
inhomogeneous, 107, 139
partial fraction expansion, 199
robustly stabilizing controller, 548 additive perturbation, 498
additive uncertainty, 484
coprime-factor uncertainty, 531
spectrum determined growth assumption, 223
transfer function, 182
delay system, see delay equation/system dense, 574
dense injection, 585
derivative, 630
Frechet, 629
detectable, see exponentially detectable
β-exponentially, 227
exponential, 9
exponentially, 227
differentiable, 630
strongly, 633
uniformly, 633
weakly, 633
differential, see Frechet differential
differential Riccati equation, 281
equivalent forms, 304
dimension, 572
directed gap, 558
discrete-time
Hardy space, 450
discrete-time system
algebraic Riccati equation, 331
approximately controllable, 212
approximately observable, 212
controllability gramian, 212
controllability map, 211
Hankel operator, 454-455
observability gramian, 212
observability map, 212
optimal control, 329
stability, 264
stabilizability, 266
dissipative inequality, 319
dissipative operators, 99
distributive, 649
divisors of zero, 649
domain
complex, 565
of an operator, 582
doubly coprime factorization, 660
of $\Sigma(A, B, C, D), 370$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 357$
dual operator, 594,598
dual semigroup, 37
dual space, 589
duality pairing, 600

E

eigenfunction, see eigenvector
eigenvalue, 610
isolated, 610
multiplicity, 611
order, 610
eigenvector, 610
generalized, 611
entire, 565
ε-admissible perturbations, 473
ε-admissible additive perturbation, 473, 492
ε-admissible left-coprime-factor perturbation, 473
ε-admissible multiplicative perturbation, 473
equivalent norms, 573
exactly controllable, 144
exactly null controllable, 153
exactly observable, 154
exponentially detectable, 9, 227
exponentially stabilizable, 9,227
exponentially stable, $6,159,215$
extended controllability gramian, 159,160
extended controllability map, 159
extended observability gramian, 159, 160
extended observability map, 159

F

factorization problem, 415
feedback, 227
feedback operator, 227
field, 650
finite rank, 582
finite-dimensional compensator, see rational controller
fixed point, 581
Fourier coefficients, 579
Fourier expansion, 579
Fourier transform, 637
inverse, 642
fractional representation theory, 5
frequency-domain Hankel operator, 401
discrete-time, 454
of $\Sigma(A, B, C), 401$
Frechet derivative, 629
Frechet differentiable at $x, 629$
Frechet differential at $x, 629$
Fubini's theorem, 628
functional, 581

G

gap, directed, 558
gap metric, 558
generalized eigenvectors, 611
generator of mild evolution operator, 118
graph, 595
graph norm, 87
greatest common divisor, 654
greatest common left divisor, 657
greatest common right divisor, 656
Gronwall's lemma, 639
group, 649
growth bound, 18

H

Hahn-Banach theorem, 589
Hamiltonian operator, 318
Hankel matrix, 453
Hankel norm, 401
Hankel operator, 7, 387, 440, 445
adjoint, 437
discrete-time, 453
frequency-domain, 454
time-domain, 454
frequency-domain, 387
continuous time, 401
discrete-time, 454
norm, 401
of $e^{-s T} G_{0}(s), 402$
of $e^{-s}, 395$
singular values, 401
time-domain, 396
continuous time, 401
discrete-time, 454
Hankel operator associated with $h, 396$
Hankel operator with symbol $G, 387$
Hankel singular value
of $e^{-s T} G_{0}(s), 403$
Hankel singular values, 7, 401
of $\Sigma(A, B, C), 401$
Hardy space, 643
discrete-time, 450
heat equation, 13,131
C_{0}-semigroup, 45
β-exponentially detectable, 255
β-exponentially stabilizable, 255
as state linear system, 142
boundary control, 121, 125, 133, 205, 208, 264
control, 136
controllability, 152
coprime factorization, 369
Dirichlet boundary conditions, 81
in Callier-Desoer class, 341, 343
inhomogeneous, 106
optimal control
finite time, 284
infinite time, 299
robustly stabilizing controller
additive perturbation, 496
coprime-factor uncertainty, 529
stabilizing compensator, 249
transfer function, 184, 186, 196
zero, 259
high gain feedback, 258
Hilbert space, 576
Hilbert's matrix, 453
Hilbert-Schmidt operator, 439
Hille-Yosida theorem, 26
\boldsymbol{H}_{∞}-optimization problem, 478
Holder inequality, 591
holomorphic, 565, 634
holomorphic continuation, 566
holomorphic semigroup, 88
homotopic, 570
homotopic invariant, 570
I
ideal, 649
identity, 649
impulse response, 178
Riesz-spectral system, 183
impulse response function, 7
$\operatorname{ind}(g), 570$
indented imaginary axis, 569
index, see Nyquist index
induced norm, 576
infinite-dimensional, 572
infinitesimal generator, 20
initially observable, see approximately observable
injective, 583
inner, 358,382
co-, 358
inner product, 576
inner product space, 576
input space, 176
input-output map, 7, 175, 176
input-output stable, 6
of \boldsymbol{H}_{∞}-configuration, 466
of feedback system, 458
of transfer function, 457
inputs, 141
instability due to delay, 258
integral
Bochner, 622
complex, 567
Lebesgue, 622
Pettis, 624
integral domain, 649
integral operators, 588
invariant
A, 69
$T(t), 69$
shift, 648
inverse, 571, 649
algebraic, 583
bounded, 609
in Banach algebra, 651
of transfer function, 368
inverse element, 649
inverse Fourier transform, 642
invertible, 583
over $\hat{\mathcal{A}}(\beta), 665$
over $\hat{\mathcal{A}}_{-}(\beta), 338$
over $\hat{\mathcal{B}}(\beta), 348$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 350$
over $\mathcal{M} \hat{\mathcal{B}}(\beta), 350$
irreducible factors, 345
isolated eigenvalue, 610
isometrically isomorphic, 573
isomorphic
isometrically, 573
topologically, 573

J

J-spectral factorization, 416

K

ker, 583
kernel, 583

L

Laplace transform, 635
two-sided, 637
Laplace-transformable functions, 635
Laurent series, 568
Lebesgue integrable, 622
Lebesgue integral, 622
Lebesgue-dominated convergence theorem, 628
left coprimeness, 657
left divisors, 657
left multiple, 656
left-coprime, 660
left-coprime factorization
of $\Sigma(A, B, C, D), 368$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 353$
over $\mathcal{M R}, 657$
left-coprime over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 352$
left-coprime-factor uncertainty, 471
Legendre polynomials, 580
limit at infinity, 351
limit at infinity in $\overline{\mathbb{C}_{\beta}^{+}}, 351$
linear combination, 572
linear fractional transformation
lower, 430
upper, 430
linear fractional transformations, 430
linear functional, 588
bounded, 588
linear operator, 582
linear space, see linear vector space
normed, 572
linear subspace, 571
linear system, 142
abstract, 176
linear vector space, 571
linearly dependent, 572
linearly independent, 572
Liouville's theorem, 566
lower linear fractional transformation, 430
Luenberger observer, 246
Lur'e equations, 320
Lyapunov equation, 160, 217, 252
Lyapunov equations, 6

M

Mobius map, 452
maximal, 579
maximal robustness margin, 479
maximum robustness margin
coprime-factor uncertainty, 508
for $\Sigma(A, B, C, D)$
coprime-factor uncertainty, 522
for $e^{-s T} G_{0}(s), 513$
McMillan degree, 359, 658
measurable
of semigroups, 622
strong, 621
uniform, 621
weak, 621
meromorphic, 565
mild evolution operator, 117
mild evolution operator generated by $A+$ $D(\cdot), 118$
mild solution, 104, 121, 125, 133
minimal realization, 8
minimum sensitivity problem, 544
Minkowski inequality, 572, 573
minor, 659
mixed sensitivity problem
weighted, 553
modal controllable, 165
model matching, 542
model reduction, 8
multiplicative subset, 652
multiplicative uncertainty, 471
multiplicity, algebraic, 611

N

natural embedding, 592
Nehari extension problem, 392
for $\Sigma(A, B, C), 432$
for $\Sigma(A, B, C, D), 429,433$
suboptimal, 413
Nehari problem, 387
Nehari's theorem, 426
nonnegative, 606
nonobservable subspace, 157
nonzero limit at ∞ in $\overline{\mathbb{C}_{0}^{+}}, 569$
norm, 572
equivalent, 573
Hankel, 401
induced by inner product, 576
operator, 583
normal, 603
normalized doubly coprime factorization
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
normalized left-coprime factorization
of $e^{-\alpha s} G_{0}(s), 381$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
normalized right-coprime factorization
of $\Sigma(A, B, C, D), 371$
of $e^{-\alpha s} G_{0}(s), 380$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(0), 358$
normed linear space, 572
Nyquist index, 570
Nyquist test, 465
Nyquist theorem, 463, 569

O

observability gramian, 6, 154
discrete-time, 212
extended, 159
observability map, 6, 154, 176
discrete-time, 212
extended, 159
observable, 6
approximately, 154
exactly, 154
observer, see Luenberger observer
open, 574
open mapping theorem, 586
operator, 582
adjoint
bounded, 601
unbounded, 603
algebraic inverse, 583
bounded, 583
closed, 595
coercive, 606
compact, 587
dual
bounded, 594
unbounded, 598
finite rank, 582
Hankel, see Hankel operator
inverse, 583, 609
linear, 582
nonnegative, 606
norm, 583
positive, 606
self-adjoint, 605
square root, 606
symmetric, 605
unbounded, 594
optimal control, 275
discrete-time, 329
optimal state trajectory, 275
optimally robust controller, 479
optimizable, 292, 329
order, 610
of a pole, 567
of a zero, 566
orientation, 567
orthogonal, 578
orthogonal complement, 578
orthogonal projection, 607
orthogonal projection lemma, 607
orthogonal projection on $V, 607$
orthonormal basis, 579
orthonormal set, 578
output, 141
output injection, 227
output injection operator, 227
output normal realization, 455
output space, 176

\mathbf{P}

Paley-Wiener theorem, 645, 646
parallel connection, 373
parallelogram law, 576
Parseval equality, 579
Parseval's equality, 642
Pettis integrable, 624
Pettis integral, 624
piecewise constant functions, 627
pivot space, 600
point spectrum, 610
poles, $359,380,567,658$
positive, 606
positive real, 320,384
positively oriented, 567
power stabilizable, 266
power stable, 212, 264
principal ideal, 649
principal ideal domain, 649
principal-axis balanced, 8
principle of optimality, 276
principle of the argument, 569
projection, 607
proper, 653
on $\overline{\mathbb{C}_{\beta}^{+}}, 351$
Pythagoras' theorem, 578

Q

quotient algebra, 652
quotient field, 652
quotient field of $\boldsymbol{H}_{\infty}, 654$
quotient ring, 652

R

ran, 582
range, 582
rational controller
delay system
additive uncertainty, 500
coprime-factor uncertainty, 531
existence, 495
for mixed sensitivity problem, 554
for Riesz-spectral system, 261
heat equation
additive uncertainty, 497
coprime-factor uncertainty, 530
robustly stabilizing
additive uncertainty, 492-494
coprime-factor uncertainty, 528
reachability subspace, 157
reachable, 143
real transfer function, 196
real vector space, 571
realization, 7
balanced, 8
minimal, 8
output normal, 455
principal-axis balanced, 8
truncated balanced, 8
rectifiable curve, 566
reduced-order model, 494
reference signal, 325
reflexive, 592
region, 565
regulator problem, 270
relatively compact, 574
residual spectrum, 610
residue, 568
resolvent equation, 611
resolvent operator, 24,609
resolvent set, 608
retarded differential equation, see delay equation/system
Riccati differential equation, see differential Riccati equation
Riccati equation
algebraic, 293
differential, 281
Riemann-Lebesgue lemma, 636
Riesz basis, 38, 89
Riesz representation theorem, 598
Riesz-spectral operator, 41, 89
C_{0}-semigroup, 42
$T(t)$-invariant, 76
resolvent, 41
Riesz-spectral system, 141
β-exponentially detectable, 237, 239
β-exponentially stabilizable, 237, 239
approximately controllable, 164
approximately observable, 164
impulse response, 183
transfer function, 183
right divisor, 656
right multiple, 657
right-coprime, 657, 660
right-coprime factorization
of $\Sigma(A, B, C, D), 366$
over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 353$
over $\mathcal{M} \mathcal{R}, 657$
right-coprime over $\mathcal{M} \hat{\mathcal{A}}_{-}(\beta), 352$
right-coprime-factor uncertainty, 557
ring, 649
robust controller
optimally, 479
robust stabilization, 470
robustly stabilizable
additive perturbations, 480
robustly stabilizes, 473
robustly stabilizing controller
additive perturbations, 482
for $\frac{e^{-s T}}{s-\alpha}$
additive perturbation, 484,498
coprime-factor uncertainty, 531
for $\Sigma(A, B, C, D)$
coprime-factor uncertainty, 526
robustly stable, 473
with robustness margin ε with respect to
additive perturbations, 479
coprime-factor perturbations, 479
multiplicative perturbations, 479
robustness margin, 473
maximal, 479
Rouche's theorem, 567

S

saturated, 652
saturated multiplicative subset, 338
scalar multiplication, 571
Schmidt decomposition, 400, 618
Schmidt pair
for $\Sigma(A, B, C), 412$
of $e^{-s T} G_{0}(s), 403$
Schmidt pairs, 400, 618
self-adjoint, 605
semigroup, see C_{0}-semigroup
semigroup invariance, see $T(t)$-invariant
semilinear, 576
sensitivity function, 553
separable, 574
set
bounded, 574
closed, 574
compact, 574
dense, 574
maximal, 579
open, 574
orthogonal, 578
relatively compact, 574
shift operator, 16,86
controllability, 151
stabilizability, 257
shift semigroup, see shift operator
shift-invariant, 648
simple, 566, 621
singular values, $399,584,618$
skew-adjoint, 89
small gain theorem, 350, 463, 542
Sobolev spaces, 577
solution
classical, 101, 121
mild, 104, 121, 133
weak, 105
span, 572
spectral factorization, 319
spectral projection, 71
spectral radius, 614
spectrum, 610
continuous, 610
point, 610
residual, 610
spectrum decomposition assumption at $\delta, 232$
spectrum determined growth assumption, 222, 267
spillover, 494
square root, 606
stability
discrete-time, 264
not determined by $\rho(A), 218,253$
stability margin, 215, 485
stabilizability
discrete-time, 266
stabilizability by high gain feedback, 258
stabilizable, see exponentially stabilizable
β-exponentially, 227
exponentially, 9, 227
stabilizes, 458
stabilizing
with robustness margin ε with respect to
additive perturbations, 479
coprime-factor perturbations, 479
multiplicative perturbations, 479
stabilizing controller, 458
stable, see exponentially stable
β-exponentially, 215
β-input-output, 457, 458, 466
w-, 534
exponentially, 6, 215
input-output, 457
power, 264
strongly, 251
weakly, 251
state, 141
state linear system, 141
state space, 176
steam chest, 135
strictly proper, 640, 653
on $\overline{\mathbb{C}_{\beta}^{+}}, 351$
strip, see vertical strip
strong convergence, 586
strong stability, 267
strongly (Lebesgue) measurable, 621
strongly continuous at $t_{0}, 586$
strongly continuous group, 88
strongly continuous semigroup, see $C_{0^{-}}$ semigroup
strongly differentiable at $t_{0}, 633$
strongly measurable, 621
strongly stable, 310
Sturm-Liouville operators, 82
suboptimal Nehari extension problem, 413
symmetric, 605

T

time-domain Hankel operator, 401, 454
topological dual space, 589
topologically isomorphic, 573
totally disconnected, 41
tracking, 262, 543
tracking problem, 325
transfer function, 5, 7, 178, 335
delay system, 182
not unique on $\rho(A), 181$
Riesz-spectral system, 183
triangular inequality, 572
truncated balanced approximation, 446
truncated balanced realization, 8
$T(t)$-invariant, 69, 97-98
Riesz-spectral operator, 76
two-sided Laplace transform, 637

U

unbounded, 594
unbounded B operator, 143
uncertainty
additive, 470
left-coprime-factor, 471
multiplicative, 471
right-coprime-factor, 557
uniform boundedness theorem, 586
uniform convergence, 585
uniformly (Lebesgue) measurable, 621
uniformly continuous at $t_{0}, 586$
uniformly differentiable at $t_{0}, 633$
uniformly measurable, 621
unimodular, 350, 657
uniqueness of the Laplace transform, 636
unit, 649
unitary, 603
unitary group, 89
upper linearfractional transformation, 430

V

variation of constants formula, 14
vector space
complex, 571
linear, 571
real, 571
vertical strip, 666

W

w-stable, 534
wave equation, $35,93,94$
C_{0}-semigroup, 95
approximately controllable, 165
approximately observable, 165
as Riesz-spectral system, 46
boundary control, 128, 206
controllability, 149
in Callier-Desoer class, 342
optimal control
finite time, 286
infinite time, 309
weak convergence, 593
weak solution, $80,105,106$
weak solution of the partial differential equation, 631
weakly (Lebesgue) measurable, 621
weakly differentiable at $t_{0}, 633$
weakly measurable, 621
weakly stable, 251
weighted additive perturbations, 551
weightedmixed sensitivity problem, 553
Y
Youla parametrization, 461

Z

z-transform, 455
zero, 211, 359, 382, 566
zero element, 571, 649

