
Appendices

Undergraduate Structural Analysis course generally focus on the Stiffness Method because
it suits the programming, execution and solution of complex redundant structures. The Force
Method, on the other hand, is not suitable for computer solutions of complex highly redun-
dant structures because it requires the selection of redundant’s and a statically determinant
stable load path. The selection of the load path and redundant’s must either be made by the
user or a clever programming logic that assures a stable and determinate structure. This is
unnecessary and impractical given that the Stiffness Method can be programmed using a
simple bookkeeping procedure. For determinate structures, however, the Force Method has
distinct advantages.

(a) The load path is defined by the determinate, stable structure and there are no redun-
dant’s. b the forces in the members can be determined directly by executing equilibrium
equations.

The example problems this text are solved using the Force Method because every struc-
ture, except one, is stable and determinate.

A detailed discussion of the Force Method and the principal of Virtual Work is provided
in AppendixA.

The procedure required to solve a redundant problem using the Force Method is shown
in AppendixB, where a Truss indeterminate to the second degree is analyzed. The selected
redundant’s are two members comprising the cross bracing of the truss.

AppendixCcontains a simple comparisonof theStiffeners andForceMethods ofAnalysis
for those who are unfamiliar with their difference.

AppendixD is an analysis of a 3-hinge reinforced concrete stairway. The concrete stepped
stairway is converted to an ‘equivalent beam’. The analysis requires a TransformationMatrix
that converts the Global Gravity Loads to Local Loads acting in the direction of the selected
degrees of freedom. The analysis includes both a buckling and a vibration solution that
includes modes shapes. The stairway is the most complex example included in this text and
may be more difficult for the reader to follow.
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AAppendix

Theoretical Development

Matrix Force Method of Analysis
Two fundamental matrices are required in the development

1.0 Equilibrium

(a) [A]—determinate structure
(b) [B]—indeterminate (Redundants)

2.0 Influence Coefficients

(a) [α] − [L/AE] truss member axial flexibility
(b) [α] − [2 × 2] beam bending flexibility matrix

α(beam) =
⎛
⎜⎝

L

3E I

L

6E I
L

6E I

L

3E I

⎞
⎟⎠

Note: For determinate structure: {R} = 0 and matrix [B] is not required
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The α Matrix

To focus on Geometric Nonlinearity, the problems solved have been carefully selected to be
Determinate. For any determinate structure, The equilibrium equations can be written:

Determinate Structure [A]{q} = {P}
where: [A] is the Equilibrium Matrix

{q} the unknown Force Vector
{P} is the applied Load Vector

The Flexibility Matrix [F] of a Determinate Structure can be written:

F = (
A−1)T [α]A−1

where A−1 is the inverse of the Equilibrium Matrix

Truss Structure
[α] matrix is a diagonal Matrix of element flexibility. Listed along the diagonal of the [α]
matrix is the element flexibility of every truss member.

Truss member α = L

A · E

Beam or Frame
For a Beam or Frame Structure, the [α] matrix is not diagonal. The element flexibility of a
beam member is given by the 2 × 2 Matrix shown below which is derived on the following
pages.

Beam member α =
⎛
⎜⎝

L

3 · E · I
L

6 · E · I
L

6 · E · I 3 · E · I

⎞
⎟⎠

A Truss indeterminate to the 2nd degree is worked out in detail in AppendixB.
ADeterminate Beam divided into ten (10) equal segments is worked out in great detail on

the following pages. Hopefully these examples will clarify the application of the [α]matrix.
Virtual Work is a powerful analytical tool in Structural Analysis toolbox that has served

Structural Engineers for many years along with other Energy Techniques. Although it has
subsequently been replaced by computer software and the Stiffness Method, it remains a
powerful analytical tool for those who appreciate and understand its limitations.
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Note that the Flexibility Matrix of every statically determinate structural frame analyzed
in this book was derived using a combination of Static Analysis (Moment Diagrams) and
Virtual Work.

To keep it simple, the technique of Virtual Work works as follows: (a) to find the
displacement of any node on the structure you place a unit load (1) at that structural node
in the direction, you want to find the displacement. (Call it Node 1)

—Using Statics draw a moment diagram for the structure and call that the Q1 system
(b) to find the displacement at any other node on the structure place a unit load at that

structural node in the direction, you want to find the displacement. (Call it Node 2)
—Using Statics draw a moment diagram and we call that the Q2 system.
To find the displacement at node 1, due to the unit load at node 1 you integrate the Q1

system with itself which gives you the influence coefficient f 11.
To find the displacement at node 1, due to the unit load at node 2 you integrate the Q1

system with the Q2 system which gives you the influence coefficient f 12
To find the displacement at node 2, due to the unit load at node 2 you integrate the Q2

system with itself which gives you the influence coefficient f 22.

SUMMARY Integrating Q1 with Q1 yields the influence coefficient; f 11

Integrating Q1 with Q2 yields the influence coefficient; f 12

Integrating Q2 with Q2 yields the influence coefficient; f 22

FLEXIBILITY Matrix F =
(

f 11 f 12

f 21 f 22

)

VirtualWork

Integration Diagrams

Member Length = L

Constant E I

Virtual Work

Integration
θ =

∫
L

0

m1(x) · m2(x)

E · I dx =
∫

L

0

M
L · M2

L · x2
E · I dx = 1

3
· M1 · M2

E · I
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BAppendix

A truss indeterminate to the 2nd degree is analyzed. The redundants selected are the 2
diagonal members that form the X bracing in each bay. The removal of the two diagonal
members leaves a truss structure that is determinate. The redundants are evaluated and the
forces in each member determined. The analysis includes an ASCE Code check which is
presented graphically.

The objective of the analysis is to present, for those not familiar with the Force Matrix
Method of Analysis (using a simple example), the procedure required to solve an indeter-
minate structure and the Matrix operations involved.

Force Matrix Method—Theoretical Development Indeterminate
Structure

The equilibrium equations can be written in the following form

[A]{q} + [B]r = {p} (T2-1)

solving for the member forces {q} we have

{q} = [
A−1] {P} − [

A−1 · B] {r} (T2-2)

{r} = [0]{P} + [I ]{R}

which can be written in the form

(
q
r

)
=

(
A−1 −A−1 · B
0 I

) (
P
R

)
(T2-3)
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Let Q11 = A−1

Q12 = −A−1 · B
(
q
r

)
=

(
Q11 Q12
0 I

) (
P
R

)

(
q
r

)
=

(
Q11 Q12
0 I

)(
P
R

)
(T2-4)

Taking the transpose of equation T2-4 we have:

(
q r

) = (
P R

) (
Q11T 0
Q12T I

)
(T2-5)

The Strain Energy, U , can be written:

U = 1/2{q r}
(

δq
δr

)
(T2-6)(

δq
δr

)
=

(
αq 0
0 αr

)(
q
r

)
(T2-7)

substituting Eq. T2-7 into Eq. T2-6 gives:

U = 1/2{q r}
(

αq 0
0 αr

) (
q
r

)
(T2-8)

substituting Eq. T2-5 and T2-4 into Eq. T2-8 gives:

U = 1/2 (PR)

(
Q11T 0
Q12T I

)(
αq 0
0 αr

)(
Q11 Q12
0 I

)(
P
R

)
(T2-9)

performing the matrix multiplication yields:

U = 1/2 (PR)

(
Q11T · αq · Q11 Q11T · αq · Q12
Q12T · αq · Q11 Q12T · αq · Q12 + αr

) (
P
R

)
(T2-10)

Using Castigliano’s Theorem we take the partial derivative with respect to the applied
load, P , and redundant, R, {PR} yields the matrix relation:

(
�

0

)
=

(
Q11T · αq · Q11 Q11T · αq · Q12
Q12T · αq · Q11 Q12T · αq · Q12 + αr

)(
P
R

)
(T2-11)

Equation T2-11 is the Flexibility Matrix, F , which may be expressed as:

(
�

0

)
=

(
F11 F12
F21 F22

)(
P
R

)
(T2-12)
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where

F11 = Q11T · αq · Q11 (T2-12.1)

F12 = Q11T · αq · Q12 (T2-12.2)

F21 = Q12T · αq · Q11 (T2-12.3)

F22 = Q12T · αq · Q12 + αr (T2-12.4)

Expanding equation T2-12 gives:

� = F11 · P + F12 · R (T2-12.5)

0 = F21 · P + F22 · R (T2-12.6)

solving Eq. T2-12.6 for the redundant, R, gives

R = −F22−1 · F21 · P (T2-12.7)

substituting Eq. T2-12.7 into Eq. T2-12.5 yields:

� = F11 · P − F12 · F22−1 · F21 · P (T2-12.8)

� = (
F11 − F12 · F22−1 · F21) · P (T2-12.9)

Summary

(1) form the A and B Matrices—Eq. T2-1
(2) invert the A matrix to get the matrix Q11
(3) multiply the B matrix by the inverse of A to get Q12 = −Q11∗B
(4) form the diagonal matrices [αq] and [αr ]
(5) form the F11, F12, F21 and F22 matrices using Eq. T2-12.1 → T2-12.4

To show the execution of the equations developed above we select a truss that is inde-
terminate to the 2nd degree. The truss is X braced and pinned at the base. In each bay, one
member of the X brace is selected as redundant which reduces the truss to determinate.

To be consistent with Eq. T2-4, the eight 8 statically determinate members are labeled
(0, 1, 2, 3, 4, 5, 6, 7) followed by the statically determinate pin reactions (8, 9, 10, 11). The
cross bracing members selected as redundant (r1, r2), become the last two members of the
vector: (12, 13).
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Equilibrium Equations
Equilibrium equations at each joint are generated using MATHCAD and the following

(a) initially the (x, y) coordinates of each joint are input.
(b) This is followed by defining direction cosines between all joint coordinates.

(which allows the input of a member between any two joints.)
(c) At each joint member connectively is now defined by inputting the following:

Joint Member Ja node Jb node
1 5 1 6
1 6 1 9

@Joint1 members 5 and 6 are connected to joint 1

member 5 runs between nodes 1 and 6

member 6 runs between nodes 1 and 9

Using MATHCAD and the member connectively input at each joint, twelve (12) equilib-
rium equations are generated for the 8 members and 4 reactions of the determinate X truss.
Adding a {2 × 2] identity matrix which accounts for the two (2) redundant’s to the twelve
(12) equilibrium equations forms a (14 × 14) Matrix in the form of equation T2-4.

[α]Matrix
The [α] matrix for a truss structure is a diagonal matrix. Each value along the diagonal
is defined by the flexibility (L/AE) of that member. The X truss has 8 members and 4
reactions. Hence the first 8 elements along the diagonal define the flexibility of eachmember
(0 → 7). The next 4 diagonals elements define the flexibility of the pin supports. For rigid
supports this would consist of the support flexibility (1/k) listed along the diagonal; where
(k) is the support stiffness.

The diagonal [α] matrix is 14 × 14.

(a) 8 values (L/AE) listed along the diagonal representing the flexibility of members
(0,1,2,3,4,5,6,7)

(b) 4 diagonal values (1/k) representing the flexibility of each support
(c) 2 diagonal values (L/AE) representing the flexibility of the redundant member r1 and

r2.

The pin supports are assigned a stiffness (k) 100 times greater than the stiffness of
each truss member (AE/L). To simplify the programming each support is defined as an
‘equivalent’ truss member with an area 100 times greater than any truss member. (defined
as ‘rigid’ relative to a truss member stiffness).
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Notes
(1) The redundant’s are carefully selected such that when they are removed the structure

is statically determinate
(2) The numbering of the members, supports, and redundant’s is carefully selected such

that the numbering is consistent with the ordering of the equilibrium equation (T2-4)
where the redundant’s are the LASTVALUES listed in the vector member force vector.

By ordering of the equilibrium equation consistent with Eq. (T2-4) we simplify
partitioning the matrix and solving the partitioned matrix using MATHCAD.

To clarify the Force Matrix Method of Structural Analysis we select the indeterminate
X braced truss structure shown below. The truss is indeterminate to the 2nd degree. The
analytical procedure used to solve for the unknown redundants is clearly defined using the
Matrix equations previously derived. All matrix operations are performed using theMathcad
program.

The solution for the truss displacements and forces in the truss members follows a typical
Linear Analysis. No 2nd order effects are considered or required since the intent of this
example is to clarify the Matrix Force Method Analysis procedure.

The analytical results are checked against AISC allowable stress design criteria and the
results are presented graphically.
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The X braced truss shown above is indeterminate to the 2nd degree. The selected redun-
dant are the cross diagonals r1 and r2 shown. There are 6 joints. Writing 2 equations per
joint yields 12 equations of equilibrium. There are 14 unknowns.

The members are assigned member numbers from 0 to 7. The truss is supported by a pin
at each support. The pin reactions become ‘rigid’ members 8, 9, 10, 11. The cross diagonals
are selected as redundant r1 and r2 and become members 11, 12. Hence we have the 14
members listed below;

# members
4 reactions [q8, q9, q10, and q11]
8 member forces [q0, q1, q2, q3, q4, q5, q6, q7].
2 redundant [r1, r2] → n[q12, q13]
The equilibrium equations are generated by a MATHCAD program that follows the pro-

cedure defined below:

(1) input and store the joint coordinates (x, y)

units in ft x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
15
0
15
0
15

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

30
30
15
15
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ft

(2) Compute the Unit Vectors [u, v] and member lengths

6 joints i := 0..5 j := 0..5

Direction Cosines ui, j := x j−xi√
(x j−xi )2+(y j−yi )2

vi, j := y j−yi√
(x j−xi )2+(y j−yi )2

Li, j :=
√

(x j − xi )2 + (y j − yi )2

Note that direction cosines are computed between ALL coordinates. Member connectiv-
ity, defined in Step 3, that follows, uses only those required.

Member Connectivity

n—node number
m—member number
ja—from node
jb—to node

n m ja jb
node member from node to node

number number
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node0 :=
n m ja jb⎛
⎝
0 0 0 1
0 1 0 2
0 3 0 3

⎞
⎠ node1 :=

n m ja jb⎛
⎝
1 0 1 0
1 2 1 3
1 12 1 2

⎞
⎠ node2 :=

n m ja jb⎛
⎜⎜⎜⎜⎜⎝

2 1 2 0
2 12 2 1
2 4 2 3
2 7 2 5
2 5 2 4

⎞
⎟⎟⎟⎟⎟⎠

node3 :=

n m ja jb⎛
⎜⎜⎜⎜⎜⎝

3 2 3 1
3 3 3 0
3 4 3 2
3 13 3 4
3 6 3 5

⎞
⎟⎟⎟⎟⎟⎠

node4 :=

n m ja jb⎛
⎜⎜⎝

4 5 4 2
4 13 4 3
4 8 4 5
4 9 4 2

⎞
⎟⎟⎠

node5 :=

n m ja jb⎛
⎜⎜⎝

5 7 5 2
5 6 5 3
5 10 5 4
5 11 5 3

⎞
⎟⎟⎠

Form Equilibrium Equations Row := 12 Col := 14
n := 0..Row − 1 m := 0..Col − 1

EquilibriumMatrix ��n,m := 0 i—node number j—number of members connected
to node

Joint 0 i := 0 j := 0..2
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

member distance d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12

Joint 1 i := 1 j := 0..2
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12

Joint 2 i := 2 j := 0..4
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12
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Joint 3 i := 3 j := 0..4
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12

Joint 4 i := 4 j := 0..3
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12

Joint 5 i := 5 j := 0..3
equilibrium
matrix

�2·(nodei ) j,0,(nodei ) j,1 := u[(nodei ) j,2,(nodei ) j,3]

�2·(nodei ) j,0+1,(nodei ) j,1 := v[(nodei ) j,2,(nodei ) j,3]

d[(nodei ) j,1] := L [(nodei )( j,2),(nodei ) j,3] · 12

Partition the Equilibrium Matrix as follows:

i := 0..11 j := 0..11 k := 0..1

Form The A and B matrices eq T2-1

Ai, j := �i, j Bi,k := �i,12+k

Invert The [A] matrix to get matrix [Q11] Q11 := A−1

Form Q12 Q12 := −Q11 · B
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Form the diagonal Matrices αq and αr

i := 0..13 j := 0..13 E := 30 · 103

Compute [α] matrix αi, j := 0

Tubular member 6 × 6 × 1/4

A0 := 62 − 5.52 A0 = 5.75

I0 := 64

12
− 5.54

12
I0 = 31.745

K Members
i := 0..13
ai := A0 Ii := I0
Reaction Properties
a8 := 100 · A0 a10 := 100 · A0
a9 := 100 · A0 a11 := 100 · A0
i := 0..13 j := 0..13

αi,i := di
ai · E

I8 := 1000 · I0 I10 := 1000 · I0
I9 := 1000 · I0 I11 := 1000 · I0

d =

0
0 180
1 180
2 180
3 254.558
4 180
5 180
6 180
7 254.558
8 180
9 180
10 180
11 180
12 254.558
13 254.558

a =

0
0 5.75
1 5.75
2 5.75
3 5.75
4 5.75
5 5.75
6 5.75
7 5.75
8 575
9 575
10 575
11 575
12 5.75
13 5.75

Partition the [αα] matrix i := 0..11 j := 0..11 k := 0..1
αqi,i := αi,i

αrk,k := α12+k,12+k

Form the Flexibility Matrix i := 0..11 j := 0..11 k := 0..1

Transpose the Q Matrices QT 11 j,i := Q11i, j
QT 12k,i := Q12i,k

Flexibility Matrices F11 := QT 11 · αq · Q11

F12 := QT 11 · αq · Q12

F21 := QT 12 · αq · Q11

F22 := QT 12 · αq · Q12 + αr
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Degrees of Freedom

LoadVector
The function of the X truss is to support a structure against lateral wind load which is applied
at degree of freedom 0 and 4 as shown above

Wroof = 40 kips
Wmid = 40 kips
Load Vector i := 0..11 Wi := 0

W0 := 20 W2 := 20

W4 := 20 W6 := 20

solving Eq. T2-12.6 for the redundant, R, gives

R := −F22−1 · F21 · W R =
(−28.284

−56.569

)
kips

The displacements are found from Eq. T2-12.9

F := (
F11 − F12 · F22−1 · F21)

� := F · W inches

Flexibility Matrix
The first 4 columns of the flexibility matrix are shown below.
Row 0 to 7 correspond to the degrees of freedom of the structure
Rows 8, 9, 10, 11 are the degrees of freedom of the ‘rigid’ pin supports
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Row⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
3
4
5
6
7
8
9
10
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F0,i :=
8.491 · 10−3

2.156 · 10−3

8.024 · 10−3

−2.059 · 10−3

3.064 · 10−3

1.58 · 10−3

3.112 · 10−3

−1.592 · 10−3

5.28 · 10−6

2.087 · 10−5

5.154 · 10−6

−2.087 · 10−5

F1,i :=
2.156 · 10−3

1.892 · 10−3

2.059 · 10−3

−2.059 · 10−4

6.351 · 10−4

9.448 · 10−4

4.292 · 10−4

−1.091 · 10−4

1.091 · 10−6

1.043 · 10−5

−1.091 · 10−6

0

F2,i :=
8.024 · 10−3

2.059 · 10−3

8.491 · 10−3

−2.156 · 10−3

3.112 · 10−3

1.592 · 10−3

3.064 · 10−3

−1.58 · 10−3

5.154 · 10−6

2.087 · 10−5

5.28 · 10−6

−2.087 · 10−5

F3,i :=
−2.059 · 10−3

−2.059 · 10−4

−2.156 · 10−3

1.892 · 10−3

−4.292 · 10−4

−1.091 · 10−4

−6.351 · 10−4

9.448 · 10−4

1.091 · 10−6

0
−1.091 · 10−6

1.043 · 10−5

W =

Loads
0

0 20
1 0
2 20
3 0
4 20
5 0
6 20
7 0
8 0
9 0
10 0
11 0

� =

Displacements
0

0 0.454
1 0.106
2 0.454
3 −0.106
4 0.204
5 0.085
6 0.204
7 −0.085
8 4.174 · 10−4

9 1.252 · 10−3

10 4.174 · 10−4

11 −1.252 · 10−3

inches

i := 0..13
Stress Analysis f ai := Qi

ai
Fy := 36 ksi σall := 0.75 · Fy

Buckling Analysis Cc :=
√

2·π2·E
Fy slenderness ratio stress

radius of gyration ri :=
√

Ii
ai

slenderness ration ratioi := di
ri
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AISC Manual

ALLOWABLE
STRESS
DESIGN

Fai :=

⎡
⎢⎢⎢⎣1 −

(
di
ri

)2

2 · Cc2

⎤
⎥⎥⎥⎦ · Fy

5

3
+ 3

8
·

(
di
ri

)

Cc
−

(
di
ri

)3

Cc3
· 1
8

ratio =

slenderness ratio
0

0 76.607
1 76.607
2 76.607
3 108.339
4 76.607
5 76.607
6 76.607
7 108.339
8 24.225
9 24.225
10 24.225
11 24.225
12 108.339
13 108.339

f a =

member stress
0

0 0
1 −3.478
2 3.478
3 4.919
4 −1.236 · 10−15

5 −13.913
6 13.913
7 9.838
8 0.07
9 0.209
10 −0.07
11 −0.209
12 −4.919
13 −9.838

Fa =

allowable stress
0

0 15.868
1 15.868
2 15.868
3 12.136
4 15.868
5 15.868
6 15.868
7 12.136
8 20.36
9 20.36
10 20.36
11 20.36
12 12.136
13 12.136

stress ration sri := if

[
f ai < 0,

(− f a)i

Fai
,
f ai
σall

]
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Stress Ratio

Axial Stress ( f a) Allowable Stress (Fa)



CAppendix

Matrix Methods of Structural Analysis

(1) Stiffness Method

(a) Displacement
(b) Direct Stiffness

(2) Force Matrix Method

A simple 2 link problem is used to display both the Stiffness and ForceMatrixMethods. The
Stiffness Method can be approached using either a Displacement technique or a procedure
called the Direct Stiffens’s Method. The Direct Stiffness Method is easily programmable
and is incorporated in most Structural Analysis Software.

The Force Matrix Method is consistent with how Structural engineers have historically
approached Structural analysis. In general the procedure requires selecting a statically deter-
minate structure (for an indeterminate structure), selecting redundant’s or unknowns and
writing equilibrium equations. The method is cumbersome and not easily programmable
and therefore not preferable for computer analysis.

Matrix Methods of Structural Analysis

Structural analysis is concerned with the determination of forces and displacements. There
are basically two approaches that can be used:

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2024
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(a) The Force Method
(b) The Displacement Method

The ForceMethod treats the forces as the unknowns. Solve for the forces and from the forces
you find the displacements.

The Displacement Method treats the displacements as the unknowns. Find the displace-
ments and from the displacements find the forces.

Nearly all of the finite element programs available today use the displacement method,
whichwill be explained later in the text. The displacementmethod is very effective for highly
redundant (indeterminate structures) because programming algorithms are very effective and
efficient. One could say that the displacement method is more computer friendly than the
force method.

The primary problem with the displacement method is that it is inconsistent with the
thinking of structural engineers who are primarily interested in forces and their effect on the
structure.

To fix ideas and to appreciate the difference between the Force and the Displacement
Method we solve example problem T3 using:

(a) Displacement Method
(b) Force Matrix Method

Example T3

Displacement Method

Sign Convention—the sign convention is extremely important when using a displacement
method. The programming algorithms are based on a consistent right hand Cartesian coor-
dinate system. For this problem all force acting up are positive. Hence, the force q is shown
below are positive acting up. The loads PO and P1 are positive acting up
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Equilibrium at joint 2—Consistent with the adopted sign convention the force q12 acts
down and the load P2 acts up. Hence equilibrium at joint 2 becomes:

Equilibrium at joint 1—Consistent with the adopted sign convention the forces q21 and
q11 act down and the load P1 acts up. Hence equilibrium at joint 1 reduces to:

Equilibrium at joint 0—consistent with the sign convention adopted, the force q00 shown
in the free body diagram of joint 0 acts down (equal and opposite) and the applied load, P1,
acts up. Hence the equilibrium equation at joint 0 reduces to:
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in Matrix form, the equilibrium equations become:

⎛
⎝
1 0 0 0
0 1 1 0
0 0 0 1

⎞
⎠ ·

⎛
⎜⎜⎝

q01
q01
q11
q12

⎞
⎟⎟⎠ =

⎛
⎝

P0
P1
P2

⎞
⎠ (1.0)

We now need a relationship between the internal forces and displacements in member 0
and member 1. The coordinate system for displacements is consistent with the coordinate
system selected for forces. Up is positive.

If we fix joint 1 and impose a displacement, δ0, at joint 0, we find that the forces in
member 0 are:

q00 = A0 · E0
L0

· δ0

q01 = −A0 · E0
L0

· δ0

If we fix joint 0 and impose a displacement, δ1, at joint 1, we find that the forces in
member 0 are:

q00 = −A0 · E0
L0

· δ1

q01 = A0 · E0
L0

· δ1

Expressing the force displacement equations for member 0 in Matrix form we have:

(
q00
q01

)
= A0 · E0

L0

(
1 −1

−1 1

)
·
(

δ00
δ01

)

repeating the procedure for member 1 we have:

(
q11
q12

)
= A1 · E1

L1

(
1 −1

−1 1

)
·
(

δ11
δ12

)
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The Matrix relations for the forces in members 0 and 1 can be expressed as:

⎛
⎜⎜⎝

q00
q01
q11
q21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

κ0 −κ0 0 0
−κ0 κ0 0 0
0 0 κ1 −κ1
0 0 −κ1 κ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δ00
δ01
δ11
δ12

⎞
⎟⎟⎠ (2.0)

E := 30000. ksi

where: κ0 = A0 · E0
L0

κ0 :=
π

4
· 12 · E
120

= 196.35

κ1 = A1 · E1
L1

κ1 := κ0 = 196.35

The vector of member displacements {δ} can be related to the vector of structural dis-
placements {�} by observing that:

δ00 = �0

δ01 = �1

δ11 = �1

δ12 = �2

in matrix form we have:

⎛
⎜⎜⎝

δ00
δ01
δ11
δ12

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ ·

⎛
⎝

�0
�1
�2

⎞
⎠

Using Matrix notation we can write equations 1.0, 2.0 and 3.0 as:
Eq. 1.0 T T · q = P

Eq. 2.0 q = κ · δ

Eq. 3.0 δ = T · �

Inspection of equations 1.0 and 3.0 show a clear relationship between the matrices. One
is the transpose of the other, and this will always be the case. In other words the relationship
between the local displacement vector, δ, and the structural displacement,�, is the transpose
of the relationship between the local forces, q, and the applied loads, P .

Substituting equations 2 and 3 into Eq. 1 gives;

substituting equations 2 and 3 into Eq. 1 gives: P = T T · κ · T · �

where the Global Stiffness matrix of the structure: K = T T · κ · T
and Transpose: P = K · �
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T :=

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ T t :=

⎛
⎝
1 0 0 0
0 1 1 0
0 0 0 1

⎞
⎠ Pt :=

(−10
−10

)

Numerical Solution

Element Stiffness Matrix κ :=

⎛
⎜⎜⎝

κ0 −κ0 0 0
−κ0 κ0 0 0
0 0 κ1 −κ1
0 0 −κ1 κ1

⎞
⎟⎟⎠

Stiffness Matrix K := T t · κ · T

K =
⎛
⎝

196.35 −196.35 0
−196.35 392.699 −196.35

0 −196.35 196.35

⎞
⎠

⎛
⎝

P0
P1
P2

⎞
⎠ =

⎛
⎝

196.35 −196.35 0
−196.35 392.699 −196.35

0 −196.35 196.35

⎞
⎠ ·

⎛
⎝

�0
�1
�2

⎞
⎠

In this form the Global stiffness matrix, K , is singular because the structure has not been
grounded. We know that the displacement at joint 2 is zero [�2 = 0] because the structure
is connected to the ground at this point.

To ground the structure in the matrix formulation we must set, �2 = 0 and the force,
P2, become the reaction, R, as shown in the matrix below.

⎛
⎝

P0
P1
R

⎞
⎠ =

⎛
⎝

196.35 −196.35 0
−196.35 392.699 −196.35

0 −196.35 196.35

⎞
⎠ ·

⎛
⎝

�0
�1
�2

⎞
⎠

To solve the problem, partition the Global Stiffness matrix as follows:

(
P
R

)
=

(
K11 K12
K21 K22

)
·
(

�

0

)

Expansion of the matrix relation gives:

P = K11 · �

R = K21 · �
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where: K11 :=
(

196.35 −196.35
−196.35 392.699

)

K21 := (
0 −196.35

)

solving for the displacement vector, �, gives:

� := K11−1 · Pt � =
(−0.153

−0.102

)

and the reaction is: R := K21 · � R = 20

Now that the displacements are known we can determine the force in each member by
back substituting as follows:

Compute the members deflections:

⎛
⎜⎜⎝

δ00
δ01
δ11
δ12

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ ·

⎛
⎝

�0

�1

0

⎞
⎠

member deflections
⎛
⎜⎜⎝

δ00
δ01
δ11
δ12

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.153
−0.102
−0.102

0

⎞
⎟⎟⎠

Compute the member forces

⎛
⎜⎜⎝

q00
q01
q11
q21

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

κ0 −κ0 0 0
−κ0 κ0 0 0
0 0 κ1 −κ1
0 0 −κ1 κ1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

δ00
δ01
δ11
δ12

⎞
⎟⎟⎠

member forces
⎛
⎜⎜⎝

q00
q01
q11
q21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−10
10

−20
20

⎞
⎟⎟⎠

Comments
The analysis looks tedious and time consuming. It is and it was prior to the computer. But
the computer is an incredible tool. Once you program it, the process is repeatable which can
be both good and bad. It is good because a better engineered structure can theoretically be
completed in less time. But it could be bad if the analysis is transparent, thematrix operations
are pre-programmed and the software is a ‘black box’. The displacement analysis described
above can be considerably condensed and shortened using a technique called the Direct
Stiffness Method.
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Direct Stiffness Method
In the Direct Stiffness Method one builds the Structural Stiffness Matrix much as a postman
delivers the mail. Consider Example T3. We have 3 degrees of freedom {�0, �1, �2} and
two (2) members whose element stiffness matrices are:

Member 0 is connected to degrees of freedom 0 and 1.
Member 1 is connected to degrees of freedom 1 and 2.
Imagine that you are a mailman and you are tasked with delivering the elements from

the member stiffness matrices [k0] and [k1] to the proper row and column of the Global
Stiffness Matrix shown below:

Formember 0, the [κ0] elements are delivered to locations (0, 0), (0, 1), (1, 0) and (1, 1).
Formember 1, the [κ1] elements are delivered to locations (1, 1), (1, 2), (2, 1) and (2, 2).
Note that the (1, 1) element from member 0 is added to the (1, 1) element from member

1 to form the (1, 1) element of the Global Stiffness Matrix.

Global Stiffness Matrix

0 1 2⎛
⎝

⎞
⎠

0 κ0 −κ0 0
1 −κ0 κ0 + κ1 −κ1

0 −κ1 κ1

=
⎛
⎝

196.35 −196.35 0
−196.35 392.699 −196.35

0 −196.35 196.35

⎞
⎠ Look

Familiar?

The FORCE Matrix Method—Theoretical Development

The equilibrium equations can be expressed in Matrix Form as:

[A]{q} = {P} (1.0)
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where,
{q}—a vector of unknown forces
{P}—the applied load vector.
[A] is a square (n × n) Equilibrium Matrix.
The number of rows = number of equations.
The number of columns = number of unknown forces.
We can solve for the unknown forces by inverting the [A] matrix.

{q} = A−1{P} (2.0)

The strain energy, U , is the dot product of the force vector {q} and the displacement
vector {δ}

U = qT · δ (3.0)

where the displacement vector {δ} is given by the Matrix relation:

{δ} = [α]{q} (4.0)

substituting Eqs. 2 and 4 into Eq. 3 yields:

U = PT · (
A−1)T · α · A−1 · P (5.0)

Using Castigliano’s Theorem we take the partial derivation of the strain energy, U , with
respect to the load vector {P} which yields the displacement vector {�}.

Taking the partial derivative gives the Matrix relation:

{�} = [F]{P} (6.0)

where the matrix [F] is called the flexibility matrix

F = (
A−1)T · α · A−1 (7.0)

Equation 7.0 provides the matrix operations required to form the flexibility matrix.
The process consists of
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(a) writing equilibrium equations to form the [A] matrix.
(b) deriving a ‘local’ flexibility matrix [α] for each structural element.
(c) performing the matrix operations.

If the structure is determinate, there will be as many equations as there are unknowns
and the [A] matrix will be square. If the structure is geometrically stable the [A] matrix can
be inverted. If the structure is geometrically unstable the [A] matrix will be singular.

Example T3
The Force Matrix Method of Structural Analysis is applied to the two link example problem

The Strain Energy stored in the two link example problem can be expressed in Matrix
form as:

U = {
q1 q2

}
⎛
⎜⎝

L1

2 · A1 · E 0

0
L2

2 · A2 · E

⎞
⎟⎠

(
q1
q2

)
(-1.0)

The forces in members 1 and 2 can be expressed by the matrix relation:

(
q1
q2

)
=

(
1 0
1 1

)(
P1
P2

)
(-2.0)

transposing equation 2.0 gives:

{
q1 q2

} = {
P1 P2

} (
1 1
0 1

)
(-3.0)

substituting equations 2.0 and 3.0 into Eq. 1.0 yields the matrix relation:

U = {
P1 P2

} (
1 1
0 1

)⎛
⎜⎝

L1

2 · A1 · E 0

0
L2

2 · A2 · E

⎞
⎟⎠

(
1 0
1 1

)(
P1
P2

)
(-4.0)

performing the matrix multiplication yields:

U = {
P1 P2

}
⎛
⎜⎝

L1

2 · A1 · E + L2

2 · A2 · E
L2

2 · A2 · E
L2

2 · A2 · E
L2

2 · A2 · E

⎞
⎟⎠

(
P1
P2

)
(-5.0)

Castigliano’s Theorem—The partial derivative of the strain energy, U , with respect to the
applied load vector {P} yields a vector of structural displacements.

Taking the partial derivative of equation 5.0 with respect to the load vector, {P}, yields:
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(
�1
�2

)
=

⎛
⎜⎜⎜⎝

L1

A1 · E + L2

A2 · E
L2

A2 · E
L2

A2 · E
L2

A2 · E

⎞
⎟⎟⎟⎠

(
P1
P2

)
(-6.0)

Equation 6.0 can be written in the more concise form:

(
�1
�2

)
=

(
f 11 f 12
f 21 f 22

) (
P1
P2

)
(-7.0)

TheMatrix

(
f 11 f 12
f 21 f 22

)
is theflexibilitymatrix. The elements f , i, j are called influence

coefficients

[F] =
(

f 11 f 12
f 21 f 22

)

The Flexibility Matrix

f 11—the displacement of joint 1 due to a unit load at joint 1

f 12—the displacement of joint 1 due to a unit load at joint 2

f 21—the displacement of joint 2 due to a unit load at joint 1

f 22—the displacement of joint 2 due to a unit load at joint 2

Evaluate [F]

L1 := 120 A1 := π

4
· 12 = 0.785 A2 := π

4
· 12 = 0.785 E = 3 × 104

L2 := 120

f 11 := L1

A1 · E + L2

A2 · E f 11 = 0.01

f 12 := L2

A2 · E f 12 = 5.093 · 10−3

f 21 := L2

A2 · E f 21 = 5.093 · 10−3

f 22 := L2

A2 · E f 22 = 5.093 · 10−3
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The Flexibility Matrix is always symmetric. Hence f 12 = f 21 or in general [ f i, j] =
f j, i] is known as Maxwell’s law of reciprocity.

F :=
(

f 11 f 12
f 21 f 22

)
F =

(
0.01 5.093 × 10−3

5.093 × 10−3 5.093 × 10−3

)

To evaluate the displacements we need to define the load vector: P1 := 10 applied
P2 := 10 down

Po :=
(
P1
P2

)
Po =

(
10
10

)

The displacements may now be obtained by performing the Matrix operation indicated
by Eq. 7.0

�o := F · Po �o =
(
0.153
0.102

)

Note that the displacements are identical to those previously obtained

Summary
(1.0) Write equilibrium equations that express the internal forces in the structure as a

function of the applied loads (see Eq. 2.0)
(2.0) Transpose the equilibrium matrix and perform the Matrix operation indicated by Eq.

4.0
(3.0) The Flexibility Matrix [F] is formed by step 2.0
(4.0) Compute the influence Coefficients f i, j .
(5.0) Define the load vector {P}
(6.0) Compute the displacements using the Matrix relation defined by Eq. 7.0

The problem that we have completed is very simple and the work required to compute
the displacements using theMatrix formulation explained above seems overly cumbersome.
But remember that we have a computer and the process can be programmed.
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AppendixD is a rather complicated analysis of a statically determinate reinforced concrete
3 HINGE stairway. The stairway is ‘idealized’ as composed of equivalent concrete beams.
A Transformation Matrix is developed to convert Global Loads and Displacements to local
loads and displacements normal to the stairway.

Gravity Loading is applied across the span. The Arch is defined by 5 local degrees of
freedom. Because the Arch is statically determinate the Force Matrix Method of Structural
Analysis is used to form the 5 × 5 Flexibility Matrix in the Local Coordinate System. A
Transformation Matrix converts the Gravity Loading to Loads in the Local Coordinate
System applied normal to the members at the five degrees freedom.

A Vibration and Critical Buckling Analysis of the stairway is evaluated. The Vibration
analysis include the frequency andmode shapes of the first twomodes. TheBuckling analysis
includes the Critical Buckling load and corresponding mode shape.

Force Matrix Method of Structural Analysis—3 Hinge Archstairway
The ensuing analysis is intended to display the power and versatility of the Force Matrix
Method. The analysis focuses on a statically determinate stairway (analyzed as a three
hinged arch).To represent displacements normal to each ramp, a transformationmatrix
is required to switch from a global system to a local coordinate system. Because the
stairway is ramped the development of the geometric stiffness matrix [Kg] becomes
somewhat more complicated.
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The 4 ft wide stairway is reinforced concrete. Reinforcement is provided using #4 re bar
spaced 6 inch on center. The stairway is analyzed as a series of beams 1 ft wide and 7 inches
thick.

The concrete stairs are idealized as the rectangular beam shown below: The beam is 12"
wide 7" deep and reinforced by #4 bars spaced 6 inches on center.

Concrete Beam

Compression bars - (2) #4 bars n = Es/Ec
Tension bars - (2) #4 bars n := 10
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Concrete Section Properties b = 12 t = 7

Cracked Location of Neutral axis b · x x
2

= As · n · (d − x)

Try x := 15 b · x
2

2
= 13.5

As := π

4
·
(
4

8

)2

· 2 As · n · (d − x) = 13.744 x = 1.5 O.K

Cracked Moment of Inertia I cr := b · x3
3

+ n · As · (d − x)2

I cr = 61.606 in4

Gross Moment of Inertia Ig := b · t3
12

Ig = 343
Ig

I cr
= 5.568

Note: Gross to Cracked ratio is 5.5 which means that the stairway will remain very stiff
unless the external load exceeds the cracking moment, Mcr . If that were to occur during the
life of the structure the stiffness would be reduced by a factor that could range from (1 > 5)
depending on the extent of the cracking.
Compute the Cracking Moment

2 numbers 4 bars per 6 foot ρ := As

b · d ρ = 6.545 × 10−3

f pc := 4000
Cracking Moment σ t := 7.5 · √

f pc σ t = 474.342 psi

σ t = 6 · Mcr

b · t2
Mcr := b · t2 · σ t

6
Mcr = 4.649 × 104 in − lbs

ACI requires that the minimum steel must satisfy the cracking moment. Using working
stress design check the steel stress at the cracking moment.
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Working Stress

concrete force C := Mcr

d− x

3

C = 1.033 × 104 lbs

concrete stress at cracking
moment

f c := 2 · C
b · x f c = 1.148 × 103 psi

concrete stress allowable 0.45 · f pc = 1.8 × 103 O.k
T := C

f y := 60000 f s := T

As
f s = 2.631 × 104 psi

Note that the stress in the steel is less than f y/2 and concrete stress is less than 0.45 f pc.
Hence the steel will work if and when the concrete cracks.

Essentially the section will probably remain uncracked during the life of the building
since the actual moment in the stairway may be appreciably less than the cracking moment.
Now we check Ultimate Strength design criteria for minimum steel requirements

Ultimate Strength f y = 6 × 104 � := 0.9

Ultimate Moment T := f y · As T = 2.356 × 104

0.85 · f pc · a · b = C = T

a := T

0.85 · f pc · b a = 0.577 inches

� · Mn

12000
= 8.325 Mu = 8 ft kips

� · Mn

Mcr
= 2.149 O.K.

Note: 2 #4 bars per foot satisfy the cracking moment and minimum steal requirements per
AIC strength design with a factor of safety of 2 (satisfies ACI)
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R1 and R2—vertical reactions—H horizontal reaction at base
External Loads—[P1, P2, P3, P4]—applied normal to members (positive as shown in
local coordinate system)

Geometer d :=
√(

a0

2

)2

+
(
h

2

)2

d = 5.59 ft

L := (a0 + b0) · 2 L = 30 ft

s := h

2 · d s = 0.447

c := a0

2 · d c = 0.894

Using the equations of equilibrium, we can express the internal forces and moments in
the frame in the form q = [A]P . Inverting the equilibrium matrix [A] we have:

q = A−1P

The ensuing analysis evaluates the
[
A−1

]
matrix directly.

First Column of Matrix
[
A−1

]
Equilibrium P1 := 1

REACTIONS R2 := P1 · d
L

R2 = 0.186

R1 := P1 · c − R2 R1 = 0.708

H2 := R2 · (a0 + b0)

h
H2 = 0.559

H1 := H2 − P1 · s H1 = 0.112

Internal Moments
/Forces

i := 0..4 j := 0..4

q1 := R1 · a0
2

− H1 · h
2

q1 = 3.261 a11 := q1

q2 := R1 · (a0) − P1 · d − H1 · h q2 = 0.932 a21 := q2
q3 := R1 − P1 · c q3 = −0.186 a31 := q3
q4 := R2 · a0 − H2 · h q4 = −0.932 a41 := q4

q5 := R2 · a0
2

− H2 · h
2

q5 = −0.466 a51 := q5

2nd Column of Matrix
[
A−1

]
Equilibrium P2 := 1
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REACTIONS R2 := P2 · d · 2
L

R2 = 0.373

R1 := P2 · c − R2 R1 = 0.522

H2 := R2 · (a0 + b0)

h
H2 = 1.118

H1 := H2 − P2 · s H1 = 0.671

Internal Moments
/Forces

i := 0..4 j := 0..4

q1 := R1 · a0
2

− H1 · h
2

q1 = 0.932 a12 := q1

q2 := R1 · (a0) − H1 · h q2 = 1.863 a22 := q2
q3 := R1 − P2 · c q3 = −0.373 a32 := q3
q4 := R2 · a0 − H2 · h q4 = −1.863 a42 := q4

q5 := R2 · a0
2

− H2 · h
2

q5 = −0.932 a52 := q5

3rd Column of Matrix
[
A−1

]
Equilibrium P3 := 1

REACTIONS R2 := P3 · (a0 + b0)

L
R2 = 0.5

R1 := P3 − R2 R1 = 0.5

H2 := R2 · (a0 + b0)

h
H2 = 1.5

H1 := H2 H1 = 1.5

Internal Moments
/Forces

i := 0..4 j := 0..4

q1 := R1 · a0
2

− H1 · h
2

q1 = −1.25 a13 := q1

q2 := R1 · (a0) − H1 · h q2 = −2.5 a23 := q2
q3 := R1 q3 = 0.5 a33 := q3
q4 := R2 · a0 − H2 · h q4 = −2.5 a43 := q4

q5 := R2 · a0
2

− H2 · h
2

q5 = −1.25 a53 := q5

4th Column of Matrix
[
A−1

]
Equilibrium P4 := 1

REACTIONS R1 := P4 · (2 · d)

L
R1 = 0.373

R2 := P4 · c − R1 R2 = 0.522

H1 := R1 · (a0 + b0)

h
H1 = 1.118

H2 := H1 − P4 · s H2 = 0.671
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Internal Moments
/Forces

i := 0..4 j := 0..4

q1 := R1 · a0
2

− H1 · h
2

q1 = −0.932 a14 := q1

q2 := R1 · (a0) − H1 · h q2 = −1.863 a24 := q2
q3 := R1 q3 = 0.373 a34 := q3
q4 := R2 · a0 − H2 · h q4 = 1.863 a44 := q4

q5 := R2 · a0
2

− H2 · h
2

q5 = 0.932 a54 := q5

5th Column of Matrix
[
A−1

]
Equilibrium P5 := 1

REACTIONS R1 := P5 · (d)

L
R1 = 0.186

R2 := P5 · c − R1 R2 = 0.708

H1 := R1 · (a0 + b0)

h
H1 = 0.559

H2 := H1 − P5 · s H2 = 0.112

Internal Moments
/Forces

i := 0..4 j := 0..4

q1 := R1 · a0
2

− H1 · h
2

q1 = −0.466 a15 := q1

q2 := R1 · (a0) − H1 · h q2 = −0.932 a25 := q2
q3 := R1 q3 = 0.186 a35 := q3
q4 := R2 · a0 − H2 · h − P5 · d q4 = 0.932 a45 := q4

q5 := R2 · a0
2

− H2 · h
2

q5 = 3.261 a55 := q5

The internal forces and moments in the frame {q} are related to the applied load vector
{P} as follows:

{q} = [Ainv]{P}
where:

Ainv: =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

⎞
⎟⎟⎟⎟⎟⎠
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Ainv: =

⎛
⎜⎜⎜⎜⎜⎝

3.261 0.932 −1.25 −0.932 −0.466
0.932 1.863 −2.5 −1.863 −0.932

−0.186 −0.373 0.5 0.373 0.186
−0.932 −1.863 −2.5 1.863 0.932
−0.466 −0.932 −1.25 0.932 3.261

⎞
⎟⎟⎟⎟⎟⎠

Dead Load
Dead Load—concrete weighs 150 lbs/cubic foot

Stairways weight Ws := 2 · d · t

12
· 12
12

· (150) Ws = 978.28 lbs

Platform Weight Wp := 2 · b0 · t

12
· 12
12

· (150) Wp = 875 lbs

Total weight Wtot := 2 · Ws + Wp Wtot = 2.832 × 103 lbs

Stairway weight per horizontal foot

ws := Ws

a0
ws = 97.828

lbs

ft
Platform weight per horizontal foot

wp := Wp

2 · b0 wp = 87.5
lbs

ft

Use a distributed dead load of 100 lbs/horizontal ft across the stairway
LIVE LOAD—design for 100 lbs/sq horizontal foot

SERVICE LOAD (dead + live) = 200 lbs/hor ft wser := 200
Global Load Vector P1x := 0 P2x := 0 P3x := 0 P4x := 0 P5x := 0

Assume a one foot section

P1y := wser ·
(
a0

2

)

P2y := wser ·
(
a0

4
+ b0

2

)
P4y := P2y

P3y := wser · (b0) P5y := P1y
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Global Load Vector (lbs)

Pg :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1x
P1y
P2x
P2y
P3x
P3y
P4x
P4y
P5x
P5y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Pg =

0
0 0
1 1 · 103
2 0
3 1 · 103
4 0
5 1 · 103
6 0
7 1 · 103
8 0
9 1 · 103

Transformation Matrix
c = 0.894
s = 0.447

Convert- Global Loads to

Local Loads

Tη :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c s 0 0 0 0 0 0 0 0
−s c 0 0 0 0 0 0 0 0
0 0 c s 0 0 0 0 0 0
0 0 −s c 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 s c 0 0
0 0 0 0 0 0 −c s 0 0
0 0 0 0 0 0 0 0 s c
0 0 0 0 0 0 0 0 −c s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Total Dead Load (1 ft of stairway) W := P1y + P2y + P3y + P4y + P5y

W = 5 × 103 lbs
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Transform Global Loads to Local Loads (normal and tangent)
LOCAL Coordinates

Pη := Tη · Pg Pη =

0
0 447.214
1 894.427
2 447.214
3 894.427
4 0
5 1 · 103
6 894.427
7 447.214
8 894.427
9 447.214

Qη :=

⎛
⎜⎜⎜⎜⎜⎝

Pη1

Pη3

Pη5

Pη6

Pη8

⎞
⎟⎟⎟⎟⎟⎠

Qη =

⎛
⎜⎜⎜⎜⎜⎝

894.427
894.427
1 × 103

894.427
894.427

⎞
⎟⎟⎟⎟⎟⎠

Compute unknown {q} vector/forces and moments in frame

q := Ainv ·Qη q =

⎛
⎜⎜⎜⎜⎜⎝

1.25 × 103

−2.5 × 103

500
−2.5 × 103

1.25 × 103

⎞
⎟⎟⎟⎟⎟⎠

ft lbs

Maximum positive service moment is: Mpos := q0 Mpos = 1.25 × 103 ft − lbs
Maximum negative service moment is: Mneg := q1 Mneg = −2.5 × 103 ft − lbs

Compare with cracking moment
Mcr

12
= 3.874 × 103 ft lbs

Under full dead + live loading (wser = 200 lbs/ft) the section could possibly crack.
Cracking would occur at joints 2 and 4 (corner top of the stairway). The stress in the steel
and concrete would satisfy the working stress criteria of ACI.

Check Ultimate Strength Mu := � · Mn

12000
Mu = 8.325 ft − kips

Ultimate Factored Loads wu := 1.4 · 100 + 1.7 · 100 wu = 310 lbs
ft

wu
wser = 1.55
Mneg · wu

wser = −3.875 × 103 < Mu [O.K]

Although one could perform additional code checks using partial loading conditions we
return our attention to the following linear and 2nd order behavior:

(1) The Flexibility Matrix
(2) Linear Displacements
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(3) The Mass Matrix
(4) Eigenvalues and Eigenvectors
(5) Geometric Stiffness Matrix
(6) 2nd order deflections, forces and moments

Deflections—The ensuing analysis will develop the following Flexibility Matrices
[Fn]—Flexibility Matrix in Local Coordinates
where: Fη = AinvT ·α · Ainv

The [α] matrix
There are 5 degrees of freedom in this local model {δ1 → δ5}. There are 10 degrees of

freedom in the global model {(�x1, �y1) → (�x5, �y5)}
i := 0..4 j := 0..4 αi, j := 0
Ec := 3 · 106 psi I cr = 61.606 in4 Ig = 343 in4

converting to consistent units (lb − ft2) gives E Icr := Ec · I cr
144

E Icr = 1.283 × 106

Connectivity E Ig := Ec · Ig
144

E Ig = 7.146 × 106

From To

Node Node Beam Elements————[α] Matrix

i := 0 j := 1 αi,i := d

3E Ig
+ d

3 · E Icr
αi, j := d

3 · E Icr
α j,i := αi, j

i := 1 j := 2 αi,i := d

3E Icr
+ d

3 · E Icr
αi, j := 0 α j,i := αi, j

i := 2 j := 3 αi,i := 0 αi, j := 0 α j,i := αi, j

i := 3 j := 4 αi,i := d

3E Icr
+ d

3 · E Icr
αi, j := d

3 · E Icr
α j,i := αi, j

i := 4 αi,i := d

3E Icr
+ d

3 · E Ig

Ainv Matrix

α =

⎛
⎜⎜⎜⎜⎜⎝

1.713 × 10−6 1.452 × 10−6 0 0 0
1.452 × 10−6 2.904 × 10−6 0 0 0

0 0 0 0 0
0 0 0 2.904 × 10−6 1.452 × 10−6

0 0 0 1.452 × 10−6 1.713 × 10−6

⎞
⎟⎟⎟⎟⎟⎠
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Transposing the Ainv Matrix gives:

AinvT := AinvT =

⎛
⎜⎜⎜⎜⎜⎝

3.261 0.932 −0.186 −0.932 −0.466
0.932 1.863 −0.373 −1.863 −0.932
−1.25 −2.5 0.5 −2.5 −1.25
−0.932 −1.863 0.373 1.863 0.932
−0.466 −0.932 0.186 0.932 3.261

⎞
⎟⎟⎟⎟⎟⎠

Local Flexibility Matrix Fη := AinvT ·α · Ainv

Local Flexibility Matrix

Fη =

⎛
⎜⎜⎜⎜⎝

3.371 × 10−5 2.863 × 10−5 −1.613 × 10−5 −2.863 × 10−5 −2.033 × 10−5

2.863 × 10−5 3.322 × 10−5 0 −3.322 × 10−5 −2.863 × 10−5

−1.613 × 10−5 0 5.98 × 10−5 0 −1.613 × 10−5

−2.863 × 10−5 −3.322 × 10−5 0 3.322 × 10−5 2.863 × 10−5

−2.033 × 10−5 −2.863 × 10−5 −1.613 × 10−5 2.863 × 10−5 3.371 × 10−5

⎞
⎟⎟⎟⎟⎠

Local Loading applied normal to frame Qη =

⎛
⎜⎜⎜⎜⎜⎝

894.427
894.427
1 × 103

894.427
894.427

⎞
⎟⎟⎟⎟⎟⎠

Displacements normal to frame δη := Fη · Qη =

⎛
⎜⎜⎜⎜⎜⎝

−4.162 × 10−3

0
0.031
0

−4.162 × 10−3

⎞
⎟⎟⎟⎟⎟⎠

Eigenvectors and Eigenvalues
Mode Shape and Frequency

Units- M mass—W (kips)/g (ft/s/s)

K—kips/ft

ω—rad/s

x—eigenvector

Eigenvalue Problem ω2 · M · x = K · x
multiplying by K−1 gives
the eigenvalue problem:

F · M · x = λ2 · x

where ω2 = 1

λ2

The frequency of the ith mode is: fi = 1
2·π ·

√
1
λi
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5 Degree of Freedom Frame Model—5 Translations
Displacement Vector: δ0 δ1 δ2 δ3 δ4

Mass Matrix m0 m1 m2 m3 m4

g := 32.2 Mass at Node 1—dead load ⇒ 100 lbs/f

W1 := 100 · a0
2

m1 := W1

g

W2 := 100 ·
(
a0

2
+ b0

2

)
m2 := W2

g

W3 := 100 · (b0) m3 := W3

g

W4 := 100 ·
(
a0

2
+ b0

2

)
m4 := W4

g

W5 := 100 · a0
2

m5 := W5

g

MASS MATRIX

Mη :=

⎛
⎜⎜⎜⎜⎜⎝

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

⎞
⎟⎟⎟⎟⎟⎠

Mη =

⎛
⎜⎜⎜⎜⎜⎝

15.528 0 0 0 0
0 23.292 0 0 0
0 0 15.528 0 0
0 0 0 23.292 0
0 0 0 0 15.528

⎞
⎟⎟⎟⎟⎟⎠

Form the FM Matrix FM := Fη · Mη

Eigenvectors and Eigenvalues of the FM Matrix c := eigenvals(FM)

Eigenvalues Frequency-cps

ω0 := 1√
c00

ω0 = 20.679 f0 := ω0

2 · π
f0 = 3.291

ω1 := 1√
c01

ω1 = 30.522 f1 := ω1

2 · π
f1 = 4.858

ω2 := 1√
c02

ω2 = 126.141 f2 := ω2

2 · π
f2 = 20.076
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Eigenvectors: v := eigenvecs(FM)

i := 0..4 j := 0..4

Modes 0 ⇒ 2

vi,0 =
0.47

0.528
0

−0.528
−0.47

vi,1 =
0.268

0
−0.926

0
0.268

vi,2 =
0.654

0
0.379

1.197 · 10−15

0.654

Normalize Modes to unity

�i,0 := vi,0

v1,0
�i,1 := vi,1

v2,1
�i,2 := vi,2

v0,2

Mode 1

f0 = 3.291 cps

�i,0 =
0.89

1
0

−1
−0.89

Mode 2

f1 = 4.858 cps

�i,1 =
−0.289

0
1
0

−0.289

Mode 3

f2 = 20.076 cps

�i,2 =
1
0

0.579
1.83 · 10−15

1

Mode Shape is shown below

Buckling
TheElastic BucklingLoad (Euler Load, Pe) can be computed from the eigenvalue problem

[K ] · δ = λ · [Kg] · δ
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where the linear displacement (� = 0) since (Q = 0) multiplying by K−1 = Fη we have:

δ = λ · Fη · [Kg] · δ solve the eigenvalue problem
1

λ
· δ = Fη · Kg · δ

Derivation of the Geometric Stiffness Matrix
Let the bucked shape of the Frame be described in local coordinates by a vector of displace-
ments, {δ}, and let the displacement at the i th node be δi equilibrium at the i th node can be
written in terms of the applied axial load, N , and the buckled shape of the beam connecting
node (i − 1) and node (i) equilibrium @ the ith Node is given by the inner product

Wgi = −
[ −1

di−1

(
1

di−1
+ 1

di

) −1

di+1

]
·
⎛
⎝

δi−1

δi

δi+1

⎞
⎠

The Geometric Stiffness Matrix (5 × 5—Local coordinates) is obtained by applying the
above equation to the frame shown below:

Frame fully Loaded with service load (deal + live = 200 lbs/ft). Compute the axial
load in each member of the frame wser = 200

R2 :=
wser · L · L

2
L

R2 = 3 × 103 lbs

R1 := R2 R1 = 3 × 103 lbs
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Horizontal force H :=
wser · L

2
· L
4

h
H = 4.5 × 103 lbs

Axial Load in stairway N := H · a0

2 · d + R1 · h

2 · d N = 5.367 × 103

Local Coordinate System

[Kg] :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

d
· N −1

d
· N 0 0 0

−1

d
· N

[
1

d
· N + 1

b0
· H ·

(
a0

2 · d
)2

]
−1

b0
· H ·

(
a0

2 · d
)

0 0

0
−1

b0
· H ·

(
a0

2 · d
)

2

b0
· H −1

b0
· H ·

(
a0

2 · d
)

0

0 0
−1

b0
· H ·

(
a0

2 · d
) [

1

d
· N + H

b0
·
(

a0

2 · d
)2

]
−1

d
· N

0 0 0
−1

d
· N 2

d
· N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalue Problem 1
λ

· δ = Fη · [Kg] · δ

Note (λ = 1) since member axial loads, N and H , are included in the matrix [Kg] a

Let: PE := Fη · [Kg]
Eigenvalues c := eigenvals(PE)

Eigenvectors v := eigenvecs(PE)

Critical
Buckling
Load, λcr

c =

⎛
⎜⎜⎜⎜⎜⎝

0.126
0.098

7.697 × 10−3

7.3 × 10−3

0

⎞
⎟⎟⎟⎟⎟⎠

λcr := 1

0.126
= 7.937

factor of 8

Assuming a single stairway ramp buckles as a pinned column—the axial load in the ramp
due to applied service load (wser = 200 lbs/ft) N = 5367 lbs

Estimate Euler
Buckling Load

λ0 := π2 · E Icr

(3 · d)2

λ0

N
= 8.392

λcr = 7.937

factor agrees → λcr
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Symmetrical Buckling—Mode 1

Buckled Modes

v =

⎛
⎜⎜⎜⎜⎜⎝

0.269 0.473 0.648 0.516 0.275
0 0.526 −1.063 × 10−14 −0.483 0.55

−0.925 0 0.401 −8.474 × 10−15 0.492
0 −0.526 9.311 × 10−15 0.483 0.55

0.269 −0.473 0.648 −0.516 0.275

⎞
⎟⎟⎟⎟⎟⎠

Critical Buckling Mode—Mode 1

symmetric mode
maximum node 3

nodes 2 and 5 move out as
node 3 (hinge) moves down

vi,0

v2,0
=

−0.291
0
1
0

−0.291

δ1—stairway leg buckles out
δ2
δ3—platform buckles in
δ4
δ5—stairway leg buckles out

Buckled Mode Shape



References

1. Corso, J.M., Transactions, ASCE, Vol 121, p. 1381-3, 1956
2. Freudenthal, A.M. Safety and Probability of Structural Failure, Transactions, ASCE, Vol 121,

1956
3. De Luzio, A.J. MIT Masters Thesis Structural Safety and Reliability, 1962
4. Moroney, M. J. Facts from Figures, Penguin Books, Baltimore, MD, 1956
5. Hald, A Statitical Theory, with Engineering Applications. New York, Wiley, 1952
6. Hald, A Statical Tables and Formulas, New York, Wiley, 1952
7. Asplund S.O. The Risk of Failure, The Structural Engineer, London, Vol. 36. Aug, 1958
8. Argyris, J. H. Energy Theorem and Structural Analysis Aircraft Engineering and Arspace Tech-

nology Vol 26 No 10 pp-347-356., MCB Up Ltd
9. Argyris, J. H. Kelsey, S. London Imperial College, Aeronautical Research Council Reports and

Memoranda, 1956
10. Crandall S. H. Random Vibration M.I.T. Wiley, Chapman and Hall 1958
11. AISC Steel Construction Manual, Thirteenth Edition, Commentary LRFD, pgs. 16.1-214, 16.1-

216
12. Galambos T. V., Ellingwood, MacGragor, and Cornell, "Probability - Based Load Criteria:

Assessment of Current Design Practice". Journal of the Structural Division, ASCE, Vol 108,
No. ST5, May 1982.

13. Ravindra, M.K. and Galambos (1978), "Load and Resistance Factor Design for Steel", Journal
of the Structural Division, ASCE. Vol.104, No. ST9, September 1978.

14. Roark, Formulas for Stress and Strain, fourth edition.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2024
A. J. DeLuzio, Geometric Nonlinearity in Structural Behavior, Synthesis Lectures
on Engineering, Science, and Technology,
https://doi.org/10.1007/978-3-031-40508-2

187

https://doi.org/10.1007/978-3-031-40508-2

	 Appendices
	 Appendix
	 Appendix
	 Appendix
	 Appendix
	 References
	

