
Appendix A
Special Functions

Because some special functions are often involved in the fractional calculus research,
to fully understand the knowledge of fractional calculus, herewe introduce six related
special functions. For more details, refer to Refs. [1, 2].

Gamma function

The Gamma function �(z) is generally defined as

�(z) =
∞∫

0

e−t t z−1dt (A1.1)

which is applied in the right half of the complex plane Re(z) > 0 and guarantees the
integral convergent at t = 0. This definition is also known as the second category
Euler integration, which is often used in practical applications and can be further
extended to the whole complex plane. Other forms of the definition (e.g. Euler’s
infinite series expressions, Weierstrass’ infinite series, etc.) will be briefly presented
in the last part of this section.

The sign of Gamma function �(z) is used in most cases; in addition, there are two
other signs�(z) and z!, which are both equal to�(z+1), z! = �(z) = �(z+1). The
sign z! is normally used only in the case of a positive integer z, but is not restricted in
this book. Thus, Eq. (A1.1) can be understood as the promotion of any real number
z, non-integer and even complex. Figure A.1 shows the Gamma function graphics.
It is easy to observe from Fig. A.1 that there are singularities of Gamma function
when z = 0,−1,−2, . . . ,−n, . . . .

1. Basic Properties

�(z) satisfies the following recurrence relations:
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Fig. A.1 Gamma function

�(z + 1) = z�(z) (A1.2)

which can be easily proved by integrating by parts:

�(z + 1) =
∞∫

0

e−t t zdt = (−e−t t z)t=∞
t=0 + z

∞∫

0

e−t t z−1dt = z�(z). (A1.3)

If z is assumed to be a positive integer, formula (A1.1) can be generalized as

�(z + n) = (z + n − 1)(z + n − 2) . . . (z + 1)z�(z), (A1.4)

or

�(z) = �(z + n)

z(z + 1) . . . (z + n − 1)
= 1

(z)n

∞∫

0

e−t t z+n−1dt, (A1.5)

where (z)n = z(z + 1) . . . (z + n − 1).
Obviously, Eq. (A1.5) extends the definition of �(z) to Re(z) > −n, where n is

an arbitrary positive integer.
In Equation (A1.1), let z = 1, we have

�(1) = 0! =
∞∫

0

e−tdt = 1. (A1.6)

In Eq. (A1.4), let z = 1, we have �(n + 1) = n! = n(n − 1) . . . 2 · 1. This shows
when z is a positive integer, �(n + 1) is the factorial n!.
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2. Euler’s Infinite Product Formula

According to the limit relation e−t = lim
n→∞(1− t/n)n , the Gamma function �(z) can

be expressed as the limit of the following integration:

Pn(z) =
n∫

0

(1 − t/n)nt z−1dt, (A1.7)

where the proof is omitted here. Let t = nτ , integrating Pn(z) by parts for n times,
thus,

Pn(z) = nz
1∫

0

(1 − τ)nτ z−1dτ

= nz
[
τ z

z
(1 − τ)n

]1
0

+ nz · n
z

1∫

0

(1 − τ)n−1τ zdτ

= · · · = nzn(n − 1) · · · 2 · 1
z(z + 1) · · · (z + n − 1)

1∫

0

τ z+n−1dτ

= 1 · 2 · · · n
z(z + 1) · · · (z + n)

nz, (A1.8)

that is, �(z) = lim
n→∞

n!nz
z(z+1)...(z+n)

. Because lim
n→∞ n/(z + n) = 1, this formula can be

rewritten as

�(z) = lim
n→∞

(n − 1)!nz
z(z + 1) . . . (z + n − 1)

. (A1.9)

And because nz can be written as nz = n−1
�
m=1

(
1 + 1

m

)z
, moreover,

(n − 1)!
z(z + 1) . . . (z + n − 1)

= 1

z

n−1
�
m=1

(
1 + z

m

)−1
. (A1.10)

In the end, we obtain another form of expression of the Gamma function, which
is Euler’s infinite series formula.

�(z) = 1

z

∞
�
n=1

{(
1 + z

n

)−1
(
1 + 1

n

)z}
. (A1.11)

The Weierstrass infinite series can be expressed as
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1

�(z)
= zeγ z ∞

�
n=1

{(
1 + z

n

)
e−z/n

}
, (A1.12)

where γ is the Euler constant

γ = lim
n→∞

{
n∑

m=1

1

m
− ln n

}
= 0.577 215 . . . . (A1.13)

For the specific derivation, refer to [1].

3. Important Properties

(1) When z → 0+, �(z) → +∞.
(2) Euler’s reflection formula: �(z)�(1 − z) = π

sin(π z) .

(3) �(n + 1/2) =
√

π(2n)!
22nn! .

(4) Multiplication theorem:

�(z)�(z + 1/2) = 21−2z√π�(2z),

�(z)�

(
z + 1

m

)
�

(
z + 2

m

)
. . . �

(
z + m − 1

m

)

= (2π)(m−1)/2m1/2−mz�(mz).

4. Special value

�

(−3

2

)
= 4

√
π

3
, �

(−1

2

)
= −2

√
π,

�

(
1

2

)
= √

π,�(1) = 0! = 1,

�

(
3

2

)
=

√
π

2
, �(2) = 1,

�

(
5

2

)
= 3

√
π

4
, �(3) = 2!,

�

(
7

2

)
= 15

√
π

8
, �(4) = 3! .
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Beta Function

Beta function, also known as the first-class Euler integration, is another special
function defined as

B(z, w) =
1∫

0

τ z−1(1 − τ)w−1dτ , (A2.1)

where the above equation needs to satisfy the condition Re(z) > 0, Re(w) > 0.

Basic Properties

(1) Beta function is symmetrical, which can be proved by the variable transforma-
tion

B(z, w) = B(w, z). (A2.2)

Beta function has many other forms, including

B(z, w) = �(z)�(w)

�(z + w)
, (A2.3)

B(z, w) = 2

π/2∫

0

(sin θ)2z−1(cos θ)2w−1dθ, Re(z) > 0, Re(w) > 0, (A2.4)

B(z, w) = 2

∞∫

0

t z−1

(1 + t)z+w
dt, Re(z) > 0, Re(w) > 0, (A2.5)

B(z, w) =
∞∑
n=0

(
n − w

n

)

z + n
, (A2.6)

B(z, w) = ∞
�
n=0

(
1 + zw

n(z + w + n)

)−1

, (A2.7)

B(z, w) · B(z + w, 1 − w) = π

z sin(π z)
, (A2.8)

B(z, w) = 1

w

∞∑
n=0

(−1)n
yn+1

n!(z + n)
. (A2.9)
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Fig. A.2 Beta function

(2) From the relation between the Beta function and Gamma function, it is easy to
obtain the following equation:

B(z, 1 − z) = �(z)�(1 − z), (A2.10)

B(z, z) = 21−2z B(z, 1/2). (A2.11)

Figure A.2 shows the Beta function changes with variable w under three selected
different constants z

Next, the specific proof of the relationship between the Beta function and Gamma
function will be given in the following part.

Considering the following equation:

�(z)�(w) =
∞∫

0

e−uuz−1du

∞∫

0

e−vvw−1dv, (A2.12)

let u = x2, v = y2,
thus,

�(z)�(w) = 4

∞∫

0

e−x2x2z−1dx

∞∫

0

e−y2 y2w−1dy,

= 4

∞∫

0

∞∫

0

e−(x2+y2)x2z−1y2w−1dxdy. (A2.13)
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Introducing plane polar coordinates: x = r cos θ , y = r sin θ , the above equation
changes into the following form:

�(z)�(w) = 4

∞∫

0

e−r2r2(z+w)−1dr

π/2∫

0

(cos θ)2z−1(sin θ)2w−1dθ. (A2.14)

In the first integration, let r2 = t , then

∞∫

0

e−r2r2(z+w)−1dr = 1

2

∞∫

0

e−t t z+w−1dt = 1

2
�(z + w); (A2.15)

in the second integration, let cos2 θ = x , then

π/2∫

0

(cos θ)2z−1(sin θ)2w−1dθ = 1

2

1∫

0

xz−1(1 − x)w−1dx = 1

2
B(z, w). (A2.16)

Substituting the above two equations into Eq. (A2.14), the relationship between
the Gamma function and Beta function is obtained as�(z)�(w) = �(z+w)B(z, w).

Dirac Delta Function

Dirac delta function is a special function widely used in the physical realm. It is a
great help for the analysis of physical problems. In particular, it is often used in the
analysis of problems, such as diffusion, seepage and wave. A brief description of the
function will be given in the following part.

1. The expression of the Dirac delta function

δ(x) =
{∞, x = 0
0, x �= 0

. (A3.1)

2. The properties of the Dirac delta function:

(1) Integral property:
∫ +∞
−∞ δ(x)dx = 1

(2) Fourier transform properties: F(1) = δ(x); F−1(δ(x)) = 1.
(3) Limit Properties:

lim
σ→0

1√
2πσ

exp

(
− x2

2σ

)
= δ(x), (A3.2)



348 Appendix A: Special Functions

lim
α→∞

√
α

π
exp
(−αx2

) = δ(x), (A3.3)

lim
α→∞

√
α

π
eiπ/4e−iαx2 = δ(x), (A3.4)

lim
α→∞

sin(αx)

πx
= δ(x), lim

α→∞
sin2(αx)

παx2
= δ(x), (A3.5)

lim
ε→0

1

2ε
e−|x |/ε = δ(x), (A3.6)

lim
ε→0

ε

x2 + ε2
= πδ(x), (A3.7)

√
i = exp

(
iπ

4

)
, (A3.8)

1

2π

+∞∫

−∞
exp(ikx)dk = δ(x). (A3.9)

Proof 1
2π

+∞∫
−∞

exp(ikx)dk = sin(αx)
πx = lim

α→∞
sin(αx)

πx = δ(x).

(4) The properties of the derivative:

Step function: θ(x) =
{
1 x > 0
0 x < 0

θ ′(x) = δ(x).

δ′(−x) = −δ′(x), δ(n)(−x) = (−1)nδ(n)(x),

d(ln x)

dx
= 1

x
− iπδ(x).

(5) Because δ(x) is an even function, there exists the following result:

∞∫

0

δ(x)dx = 1

2
.

(6) Convolution Properties:

δ(ax) = 1

|a|δ(x), (A3.10)
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+∞∫

−∞
f (x)δ(x − a)dx = f (a), (A3.11)

δ(x − x ′) =
∞∑
n=0

1√
π2nn!e

−(x2+x ′2)/2Hm(x ′)Hm(x). (A3.12)

Mittag-Leffler Function

For a long time, the Mittag-Leffler (M-L) function, especially the generalized (two-
parameter) M-L function is not familiar to the public. In fact, Mathematics Subject
Classification in 1991 even didn’t include the introduction of the M-L function and
related content, and the American Mathematical Society (AMS) classification fore-
cast doesn’t have its new entry (33E12) until 2000. In recent years, the generalized
M-L function has been widely applied in the study of fractal dynamics, fractional
anomalous diffusion and fractal random field [1, 3, 4] and coherent states in quantum
field theory [5]. The application in these areas, in turn, promotes the development
of the study of the function. For example, in the study of the theory of general-
ized fractional calculus, a recently developed multi-index Mittag-Leffler function
has obtained a full use [6].

Exponential function ez plays an important role in the integer-order differential
equation; it can bewritten in the form of a series:ez =∑∞

k=0
zk

�(k+1) ; it is a special case
of the single-parameter Mittag-Leffler function. The function Eα(z) was proposed
by G. M. Mittag-Leffler, and A. Wiman also did some research on this function.
The generalized Mittag-Leffler function has a very important role in the fractional
calculus, and it is derived from solving fractional differential equations using the
Laplace transform by Humbert and Agarwal.

1. The definition of the Mittag-Leffler function

(1) Single-parameter Mittag-Leffler function:

Eα(x) =
∞∑
k=0

xk

�(αk + 1)
, α > 0. (A4.1)

FigureA.3 shows the image of theMittag-Leffler function of several special cases.
The value of the parameter α is 0, 1, 2, 3, 4 and 5.

Whenα = 0, E0(x) =∑∞
k=0 x

k = 1
1−x .x = 1 is the singular point of the function.

When x ∈ [−50, 1), the function value is a positive number, and the function value
increases with x. When x → 1−, function value tends to +∞. When x ∈ (1, 10],
the function value is negative, and when x → 1+, the function value tends to −∞.
When α = 1, M-L function is the exponential function ex , so we can say that the
exponential function is a special case of the M-L function. Taking other different
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Fig. A.3 Single-parameter
Mittag-Leffler function [29]

values of α, the function represented by the M-L function will be listed below:

α = 2, E2(x) =
∞∑
k=0

xk

�(2k + 1)
= cosh(

√
x),

α = 3, E3(x) =
∞∑
k=0

xk

�(3k + 1)
= 1

3

[
ex

1/3 + 2e−x13/2/2 cos

(
1

2

√
3z1/3

)]
,

α = 4, E4(x) =
∞∑
k=0

xk

�(4k + 1)
= 1

2

[
cos
(
x1/4

)+ cosh
(
z1/4
)]

,

For single-parameter Mittag-Leffler function, let z = −tβ , thus,

Eβ

(−tβ
) =

∞∑
k=0

(−tβ
)k

�(βk + 1)
.

The function has the following limiting form:
When β = 1, the Mittag-Leffler function degrades to an exponential decay

function e−t .
When 0 < β < 1, if t → 0, the Mittag-Leffler function can be approximated by

the extended exponential decay function: exp
(−tβ/a

)
, a = �(β + 1); if t → ∞,

the Mittag–Leffler function can be approximated by a power function: bt−β, b =
�(β) sin(βπ)/π (see Fig. A.4).

(2) Two-parameter (generalized) Mittag-Leffler function [1]:

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)
, α > 0, β > 0. (A4.2)
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Fig. A.4 The approximation of the Mittag-Leffler function

From the definition of the generalizedM-L function, it is not difficult to find
that single-parameter M-L function is its special case (when β = 1); therefore,
Fig A.3 can be regarded as a graphic of the generalized M-L function when
β = 1.

Considering several special cases:

(1) α = 1, β = 1,

E1,1(z) = ez .

(2) If α = 1
2 , β = 1,

By definition, it can be obtained that

E1/2,1(z) =
∞∑
k=0

zk

�(k/2 + 1)
= ez

2
er f c(−z),

er f c(z) = 2√
π

∞∫

z

e−t2dt,

where er f c() is the error function.
(3) When β �= 1,

E1,2(z) = ez − 1

z
.
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(3) Generalized M-L function with changed parameters

Let z = 1 and β = 1, studying the function changes with parameter α. It is
shown in Fig A.5, with the increase of parameter α, the value of the function
at the same point reduces, i.e. the smaller α, the greater function value.

Let z = 1 and α = 1, considering that the function changes with parameter
β. It is shown in Fig A.6, for a fixed z, M-L function decreases with the increase
in β. The decreasing rate is smaller than that in Fig A.5, and it decreases slowly
at first, then increases with the increase in β.
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Fig A.5 When β = 1 and z = 1, M-L function changes with α
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Fig A.6 When α = 1 and z = 1, M-L function changes with β
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(4) Some special functions

Some special functions are introduced below, which can all be expressed as
the form containing the M-L function [1].

(1) The Miller–Ross function

εt (v, a) = tv
∞∑
k=0

(at)k

�(v + k + 1)
= tvE1,v+1(at),

(2) The Rabotnov function

�α(β, t) = tα
∞∑
k=0

βk tk(α+1)

�((k + 1)(1 + α))
= tαEα+1,α+1

(
βtα+1

)
,

(3) A class of fractional sine and cosine functions

Scα(z) =
∞∑
n=0

(−1)nz(2−α)n+1

�((2 − α)n + 2)
= zE2−α,2

(−z2−α
)
,

Csα(z) =
∞∑
n=0

(−1)nz(2−α)n

�((2 − α)n + 1)
= E2−α,1

(−z2−α
)
,

These two functions proposed by Plotnikov and Tseytlin are called
“fractional sine and cosine functions”.

(4) Another class of fractional sine and cosine functions

sinλ,μ(z) =
∞∑
n=0

(−1)k z2k+1

�(2μk + 2μ − λ + 1)
= zE2μ,2μ−λ+1

(−z2
)
,

cosλ,μ(z) =
∞∑
n=0

(−1)k z2k

�(2μk + μ − λ + 1)
= E2μ,μ−λ+1

(−z2
)
,

These two functions are proposed by Luchko and Srivastava; they also
can be expressed in the form of M-L function.

(5) Double M-L function

ξ
v,σ
α,β,λ,μ(x, y) =

∞∑
m=0

∞∑
n=0

xm+ β(vn+1)−1
α yn+ μ(σm+1)−1

λ

�(mα + (vn + 1)β)�(nλ + (σm + 1)μ)
,

This function is proposed by P. Hubert, P. Delerue and A. M Chak and
further expanded by H. M Srivastava.



354 Appendix A: Special Functions

(5) M-L functions with multi-parameter

E(α1,...,αm ),β(z1, . . . , zm) =
∞∑
k=0

∑
l1 + · · · + lm = k
l1 > 0, . . . , lm > 0

(k; l1, . . . , lm)
∏m

i=1 z
li
i

�
(
β +∑m

i=1 αi li
) ,

where (k; l1, . . . , lm) denotes polynomial coefficients. This function was orig-
inally proposed by Hadid and Luchko for solving fractional differential
equations with linear constant coefficient.

2. The Laplace transform of the generalized Mittag-Leffler function

The Laplace transform of the generalized Mittag-Leffler function plays an impor-
tant role in solving fractional differential equations. And the inverse Laplace trans-
forms of this function are always applied to get the analytical solution of some simple
fractional-order equations.

The derivation of the Laplace transforms of the generalized M-L function will be
given in the following section.

Firstly, substituting e±zt in the integration
∫∞
0 e−t e±ztdt with the Mittag-Leffler

function, then performing integral with respect to t, lastly, we have

∞∫

0

e−t e±ztdt =
∞∫

0

e−t

( ∞∑
k=0

(±zt)k

k!

)
dt,

=
∞∑
k=0

(±z)k

k!
∞∫

0

e−t t kdt,

According to the definition of Gamma function
∫∞
0 e−t t kdt = �(k + 1) = k!,

thus

∞∫

0

e−t e±ztdt =
∞∑
k=0

(±z)k = 1

1 ∓ z
. (A4.3)

Adding t k into the above integral term and performing the above integration again,
thus

∞∫

0

e−t t ke±ztdt = k!
(1 ∓ z)k+1

, (|z| < 1). (A4.4)

Making appropriate substitution to the equation, the Laplace transform of function
t ke±at is obtained as follows:
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∞∫

0

e−pt t ke±atdt = k!
(p ∓ a)k+1

, (Re(p) > |a|). (A4.5)

According to Eqs. (A4.2) and (A1.1), the Laplace transform of generalized M-L
function is considered as follows:

∞∫

0

e−t tβ−1Eα,β(ztα)dt =
∞∑
k=0

zk

�(αk + β)

∞∫

0

e−t tαk+β−1dt

= 1

1 − z
, (|z| < 1). (A4.6)

Then, making the same transform to Eq. (A4.5), the Laplace transform of function
tαt+β−1E (k)

α,β(±atα) is obtained as follows:

∞∫

0

e−pt tαk+β−1E (k)
α,β(±atα)dt = k!pα−β

(pα ∓ a)k+1 ,
(
Re(p) > |a|1/α), (A4.7)

where E (k)
α,β(y) = dk

dyk Eα,β(y).
Simplified as

L
{
t kα+β−1E (k)

α,β(∓atα), p
}

= k!pα−β(
pα ± ak+1

) , Re(p) > |a|1/a, (A4.8)

where E (k)
α,β = dk

dzk Eα,β(z), the Ref. [7] has given a rigorous and simple proof of this
formula.

In particular, if let α = β = 1
2 , we can get

∞∫

0

e−pt t
k−1
2 E (k)

1
2 , 12

(±a
√
t)dt = k!

(
√
p ∓ a)k+1

,
(
Re(p) > |a|2). (A4.9)

It is noted here that Eq. (A4.9) is extremely useful for solving fractional derivative
equation when the order of derivative equals 1/2.

3. Derivative and integral of the M-L function

(1) Derivative of the M-L function

For equations given in this section, the derivation process is no longer given, and
only the conclusion is given, and the interested reader can try to derive it.

Because individually differentiating the M-L function is relatively complicated,
the differential of the product of the M-L function and the power function of t is
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generally considered. Choosing the definition of the Riemann–Liouville fractional
differential, then

dγ

dtγ

(
tαk+β−1E (k)

α,β(λtα)
)

= tαk+β−γ−1E (k)
α,β−γ (λtα), (A4.10)

Let k = 0, λ = 1, γ is an integer and m = γ , thus Eq. (A4.10) can be rewritten
as

(
d

dt

)m(
tβ−1Eα,β(tα)

) = tβ−m−1Eα,β−m(tα), (m = 1, 2, 3, . . .). (A4.11)

Considering the following two cases of Eq. (A4.11):

(1) When α = m
n , and m, n are natural numbers, thus

(
d

dt

)m(
tβ−1Em/n,β

(
tm/n

)) = tβ−1Em/n,β

(
tm/n

)+ tβ−1
n∑

k=1

t−
m
n k

�
(
β − m

n k
) .

(A4.12)

If let n = 1, then

(
d

dt

)m(
tβ−1Em,β

(
tm
)) = tβ−1Em,β

(
tm
)+ tβ−1 t−m

�(β − m)
. (A4.13)

According to the property of Gamma function,

1

�(−v)
= 0, (v = 0, 1, 2, . . .).

Let m = 1, 2, 3, . . . ; β = 0, 1, 2, . . . ,m, we can obtain

(
d

dt

)m(
tβ−1Em,β

(
tm
)) = tβ−1Em,β

(
tm
)
. (A4.14)

Substituting t = zn/m into Eq. (A4.11), thus

(
m
n z

1− n
m

d
dz

)m(
z(β−1)n/mEm/n,β(z)

)
= z(β−1)n/mEm/n,β(z) + t (β−1)n/m

∑n
k=1

z−k

�(β− m
n k)

, (m, n = 1, 2, 3, . . .),

(A4.15)

and let m = 1, we obtain
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1
n

d
dz

(
z(β−1)n E1/n,β(z)

)
= z(βn−1E1/n,β(z) + zβn−1∑n

k=1
z−k

�(β− k
n )

, (n = 1, 2, 3, . . .). (A4.16)

(2) The integral of M-L function

Performing integral itemized to the left side of the following equation, thus we
obtain

z∫

0

Eα,β(λtα)tβ−1dt = zβEα,β+1(λz
α), β > 0, (A4.17)

then considering the integral

1

�(v)

z∫

0

(z − t)v−1Eα,β(λtα)tβ−1dt,

this integration is also relatively easy, and the integral can be solved as follows:
The above integral

1

�(v)

z∫

0

(z − t)v−1Eα,β(λtα)tβ−1dt

=
∞∑
k=0

λk

�(αk + β)

1

�(v)

z∫

0

(z − t)v−1tαk+β−1dt

=
∞∑
k=0

λk

�(αk + β)

1

�(v)

π
2∫

0

(
z − z sin2 θ

)v−1
z sin2 θαk+β−1d

(
z sin2 θ

)

= zβ+v−1Eα,β+v(λz
α). β > 0, v > 0.

(A4.18)

As a result, some special integral equations are obtained:

1

�(α)

z∫

0

(z − t)α−1eλtdt = zαE1,α+1(λz), (α > 0)). (A4.19)

1

�(α)

z∫

0

(z − t)α−1 cosh(
√

λt)dt = zαE2,α+1
(
λz2
)
, (α > 0). (A4.20)
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1

�(α)

z∫

0

(z − t)α−1 sinh(
√

λt)√
λt

dt = zα+1E2,α+2
(
λz2
)
, (α > 0). (A4.21)

The analytical solutions of fractional differential equations involve M-L function
many times. Therefore, in order to compare the error relationship between the numer-
ical solution and analytical solution, it is necessary to calculate the function values of
M-L function. For this reason, many MATLAB Programs for calculating this func-
tion have been written by a lot of scholars until now, and readers can download them
on the website [27, 28].

Wright Function

TheWright function plays an important role in solving linear fractional partial differ-
ential equations, such as the wave equation. There are some connections between
this function and the generalized M-L function. This function was first proposed by
British mathematicianWright [8], and a large number of useful equality relations are
derived from the Laplace transform of fractional differential equations summarized
by Humbert and Agarwal [9].

Series form definition of the Wright function:

W (z;α, β) =
∞∑
k=0

zk

k!�(αk + β)
, (A5.1)

and Eq. (A5.1) can be written as the following integral form:

W (z;α, β) = 1

2π i

∫

Ha

τ−βeτ+zt−α

dτ, (A5.2)

The Properties of the Wright function [10, 11].

Property 1 If arg(−z) = ζ, |ζ | ≤ π , and

Z1 = (α|z|)1/(α+1)ei(ζ+π)/(α+1), Z2 = (α|z|)1/(α+1)ei(ζ−π)/(α+1),

thus

W (z;α, β) = H(Z1) + H(Z2), (A5.3)

in which
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H(Z) = Z1/2−βe{1+(1/α)}z
{

M∑
m=0

(−1)mam
Zm

+ O

(
1

|Z |M+1

)}
, Z → ∞, (A5.4)

where if the value m in Eq. (A5.4) is fixed, the value am can be calculated directly,
e.g. a0 = (2π(ρ + 1))−1/2.

Property 2 The relationship between the Wright Function and the Bessel function:

Jv(z) =
( z
2

)v

W

(
− z2

4
; 1, v + 1

)
; (A5.5)

Iv(z) =
( z
2

)v

W

(
z2

4
; 1, v + 1

)
. (A5.6)

Property 3 The relationship between the Wright function and the Mittag–Leffler
function [1]:

L{W (t;α, β); s} = s−1Eα,β

(
s−1
)
. (A5.7)

Property 4 The relationship between theWright function and theMeijerG-function.
When α is a rational number, and α = p/q, the Wright function can be expressed

with the Meijer G-function as follows:

W (−z;α, β) = (2π)(p−q)/2q1/2 p−β+1/2

× Gq,0
0,p+q

[
zq

qq pp

∣∣∣∣ −
0, 1q , 2q ,...,

q−1
q ,1− β

p ,1− 1+β

p ,...,1− p−1+β

p

]
. (A5.8)

Property 5 The relationship between the Wright function and the Fox H-function.
When ρ is an arbitrary positive number, the Wright function is a special case of

the Fox H-function [12–14]:

W (−z;α, β) = H 1,0
0,2

[
z

∣∣∣∣ −
(0, 1), (1 − β, α)

]
. (A5.9)

In addition, the Generalized Wright function generally can be expressed as

W (z; (μ, a), (v, b)) =
∞∑
k=0

zk

�(a + μk)�(b + vk)
.μ, v ∈ R, a, b ∈ C. (A5.10)
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H-Fox Function

H-Fox function is also called as the Fox function,H-function, the generalizedMellin–
Barnes function or generalized Meijer’s G-function in different papers. In order
to unify and extend the existing results of the symmetric Fourier kernel, Fox has
defined the H-function using the general Mellin–Barnes-type integral. It is widely
used in the problems of statistics, physics and engineering to get the solution of
fractional linear differential equations. It is necessary to note that almost all the
special functions applied in the mathematical and statistical area are the special cases
of H-Fox function. Even the complex functions such as the Mittag-Leffler function,
Meijer’s G-function [18], the Maitland generalized hypergeometric function and the
Wright generalized Bessel functions are included. This section is compiled based
primarily on the literature [2, 19–22].

H-Fox function based on the Mellin–Barnes-type integral is [14, 17, 23]

Hm,n
p,q (z) = Hm,n

p,q

[
z|(ap,αp)

(bq ,βq)

]
= Hm,n

p,q

[
z|(a1,α1),(a2,α2),...,(ap,αp)

(b1,β1),(b2,β2),...,(bq ,βq)

]

= 1

2π i

∫

L

χ(s)zsds, z �= 0, (A6.1)

in which integral density

χ(s) = A(s)B(s)

C(s)D(s)
,

and

A(s) =
m∏
j=1

�
(
b j − β j s

)
, B(s) =

n∏
j=1

�
(
1 − a j + α j s

)
,

C(s) =
q∏

j=m+1

�
(
1 − b j + β j s

)
, D(s) =

p∏
j=n+1

�
(
a j − α j s

)
, (A6.2)

wherem, n, p and q are non-negative integers, which satisfy 0 ≤ n ≤ p, 1 ≤ m ≤ q.

When n =0, B(s) = 1; q = m, C(s) = 1; p = n, D(s) = 1. The parameters
a j ( j = 1, 2, . . . , p) and b j ( j = 1, 2, . . . , q) are complex numbers, and α j ( j =
1, 2, . . . , p) and β j ( j = 1, 2, . . . , q) are positive numbers. These parameters satisfy
the conditions:

P(A) ∩ P(B) = ∅, (A6.3)
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where

P(A) =
{
s = b j + k

β j
| j = 1, . . . ,m; k = 0, 1, 2, . . .

}
,

P(B) =
{
s = a j − 1 − k

α j
| j = 1, . . . , n; k = 0, 1, 2, . . .

}
,

are the sets of poles A(s) and B(s), respectively. The integral path L is from s =
c − i∞ to s = c + i∞ and makes the poles set separate. Then the points in A(s)
locate in the right of L, and the points in B(s) locate in the left of L. Equation (A6.3)
can also be written as α j (bh + υ) �= βh

(
a j − λ − 1

)
, (υ, λ = 0, 1, 2, . . . ; h =

1, . . . ,m; j = 1, . . . , n). Note that the path integral (A6.1) is the inverse Mellin
transform of χ(s).

H-Fox function has the following important properties [15, 17, 24]:

Property 1 H-Fox function has the property of permutation symmetry with
respect to (a1, α1), . . . , (an, αn), (an+1, αn+1), . . . ,

(
ap, αp

)
,(b1, β1), . . . , (bm, βm)

and (bm+1, βm+1), . . . ,
(
bq , βq

)
.

Property 2 If an element of the array in
(
a j , α j

)
( j = 1, 2, . . . , n) equals an element

of the array in
(
b j , β j

)
( j = m + 1,m + 2, . . . , q) [or an element of the array

in
(
b j , β j

)
( j = 1, 2, . . . ,m) equals an element of the array in

(
a j , α j

)
( j = n +

1, n+2, . . . , p)], the H-Fox function can be simplified to a low-level H-Fox function,
namely subtract 1 from p, q and n (or m), respectively.

Therefore, there is the simplification formula:

Hm,n
p,q

[
z|(a1,α1),(a2,α2),...,(ap,αp)

(b1,β1),(b2,β2),...,(bq−1,βq−1),(a1,α1)

]
= Hm,n−1

p−1,q−1

[
z| (a2, α2), . . . ,

(
ap, αp

)
(b1, β1), . . . ,

(
bq−1, βq−1

)
]
,

(A6.4)

where n ≥ 1, q > m.

Property 3
Hm,n

p,q

[
z|(a j ,α j)

(b j ,β j)

]
= Hn,m

q,p

[
1

Z
|(1−b j ,β j)
(1−a j ,α j)

]
(A6.5)

According to this nature, we can rewrite the Fox function under the condition of
μ =∑g

j=1 β j −∑p
j=1 α j < 0 into another Fox function satisfying μ > 0.

Property 4

Hm,n
p,q

[
z|(ap,αp)

(bq ,βq)

]
= kHn,m

q,p

[
Zk
∣∣(ap,kαp)
(bq ,kβq)

]
, (A6.6)

where k > 0.
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Property 5

zσ Hm,n
p,q

[
z|(ap,αp)

(bq ,βq)

]
= Hn,m

q,p

[
z|(ap+σαp ,αp)

(bq+σβq ,βq)

]
. (A6.7)

In order to discuss the analytic properties of the H-Fox function and asymptotic
expansion, define the following symbols:

μ =
q∑
j=1

β j −
p∑

j=1

α j ; (A6.8)

α =
n∑
j=1

α j −
p∑

j=n+1

α j +
m∑
j=1

β j −
q∑

j=m+1

β j ; (A6.9)

β =
p∏

j=1

α
α j

j

q∏
j=1

β
−β j

j ; (A6.10)

γ =
q∑
j=1

b j −
p∑

j=1

a j + p − q

2
; (A6.11)

λ =
m∑
j=1

β j −
q∑

j=m+1

β j −
p∑

j=1

α j ; (A6.12)

δ =
⎛
⎝ m∑

j=1

β j −
p∑

j=n+1

α j

⎞
⎠π. (A6.13)

H-Fox function is the analytic function of z and meaningful if the following
existence conditions are met [15, 17, 24, 25]:

Situation 1 If μ > 0, z �= 0.
Situation 2 If μ = 0, 0 < |z| < β−1.

Then generally, the H-Fox function is multivalued; however, it is single-valued in
the Riemann surface of log z and can be obtained as follows:

Hm,n
p,q (z) = −

∑
s∈P(A)

Res

(
A(s)B(s)

C(s)D(s)
zs
)

. (A6.14)

When the pole of the function
∏m

j=1 �
(
b j − β j s

)
is a single pole, i.e. when j �=

h; j, h = 1, 2, . . . ,m; λ, υ = 0, 1, 2, . . . , βh
(
b j + λ

) �= β j (bh + υ), we get the
H-Fox function as follows:



Appendix A: Special Functions 363

Hm,n
p,q (z) =

m∑
h=1

∞∑
v=0

∏m
j=1, j �=h �

(
b j − β j (bh + v)/βh

)
∏q

j=m+1 �
(
1 − b j + β j (bh + v)/βh

)

×
∏n

j=1 �
(
1 − a j + α j (bh + v)/βh

)
∏p

j=n+1 �
(
a j − α j (bh + v)/βh

) × (−1)vz(bh+v)/βi

v!βh
. (A6.15)

Braaksma pointed out [17, 24, 26]

Hm,n
p,q (z) = O

(|z|c), z ≤ 1, (A6.16)

where μ ≥ 0, c = min�(b j/Bj
)
( j = 1, 2, . . . ,m);

Hm,n
p,q (z) = O

(|z|d), z ≥ 1, (A6.17)

in which μ ≥ 0, α > 0, | arg z| < απ/2, d = max�
(
a j−1
α j

)
( j = 1, 2, . . . , n).

Especially, if λ > 0, | arg z| < λπ/2 and μ > 0, then when n = 0, for the bigger
z, H-Fox function tends to 0 exponentially, thus

Hm,0
p,q (z) → O

{
exp
(−μz1/μβ1/μ

)
z(γ+1/2)/μ

}
. (A6.18)

If n > 0, δ > μπ/2, when |z| → ∞, we get the H-Fox function at every closed
subspace of | arg z| < δ − πμ/2 as follows:

Hm,n
p,q (z) →

∑
s∈P(−1)

Re s

(
A(s)B(s)

C(s)D(s)
zs
)

. (A6.19)

In addition, if ω and η are both complex numbers, ω �= 0 and η �= 0, μ > 0 (μ is
defined in Eq. (A6.8)), thus we get

Hm,n
p,q

(
ηω|ap,αp

(bq ,βq)

)
= ηbq/βq

∞∑
r=0

(
η1/βq − 1

)r
r !

× Hm,n
p,q

(
ω|(a1,α1),...,(ap,αp)

(b1,β1),...,(bq−1,βq−1),(r+bq ,βq)

)
, (A6.20)

where q > m,
∣∣η1/βq−1

∣∣ < 1, arg(ηω) = βq arg
(
η1/βq

) + arg(ω),
∣∣arg(η1/βq

)∣∣ <

π/2.
Some special cases of the Fox functions are discussed below. When α j = 1( j =

1, 2, . . . , p), β j = 1( j = 1, 2, . . . , q), H-Fox function reduces to a Meijer G-
function [2,18]:

Hm,n
p,q

[
z|(a1,1),...,(ap,1)

(b1,1),...,(bq ,1)

]
= Gm,n

p,q

[
z|aq ,...,ap

b1,...,bq

]
. (A6.21)
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If adding other conditions m = 1 and p ≤ q, the Fox function can be expressed
as a generalized hypergeometric function pFq as follows:

Hm,n
p,q

[
Z |(a1,1),...,(ap,1)

(b1,1),...,(bq ,1)

]
=
∏n

j=1 �
(
1 + b1 − a j

)
zb1∏q

j=2 �
(
1 + b1 − a j

)
zb1

×p Fq−1

(
1 + b1 − a1, . . . , 1 + b1 − ap

1 + b1 − b2, . . . , 1 + b1 − bq
; (−1)p−n−1z

)
.

(A6.22)

Many of the so-called special functions, such as the error function, the Bessel
functions, the Whittaker functions, the Jacobi polynomials and elliptic integrals, are
special cases of the generalized hypergeometric function.

An important H-Fox function not included in the G-function class is shown as
follows:

H 1,p
p,q+1

[
Z |(1−a1,a1), ...,(1−ap,ap)

(0,1),(1−b1,β1)...,(1−bq ,βq)

]
=

∞∑
r=0

∏p
j=1 �

(
a j + α j r

)
∏g

j=2 �
(
b j + β j r

) × (−z)r

r !

=p �q

(
(a1, α1), . . . ,

(
ap, αp

)
(b1, β1), . . . ,

(
bq , βq

) ;−z

)
,

(A6.23)

where p�q(z) is called the Maitland generalized hypergeometric function. A special
case in Eq. (A6.23) gives the relationship between the H-fox function and the
generalized Mittag-Leffler function Eα,β(z) as follows:

H 1,1
1,2

(
z|(0,1)(0,1),(1−β,α)

)
= Eα,β(−z). (A6.24)
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29. http://mathworld.wolfram.com/Mittag-LefflerFunction.html25.
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Appendix B
Related Electronic Resources of Fractional
Dynamics

Web Resources

1. Power-law phenomenon and Fractional dynamic system

(http://www.ismm.ac.cn/ismmlink/PLFD/index.html).
2. Center for Self-Organizing and Intelligent Systems

(http://www.csois.usu.edu).
3. Fractional calculus in Utah State University

(http://www.mechatronics.ece.usu.edu/foc).
4. Institute of Soft Matter Mechanics

(http://www.ismm.ac.cn/).
5. Group of Robotics and Intelligent Systems

(http://www.ave.dee.isep.ipp.pt/~gris/index.htm).
6. Fractional calculus modeling

(http://www.fracalmo.org/).
7. Jordan Research Group in Applied Mathematics (JRGAM)

(http://www.mutah.edu.jo/jrgam/index.html)
8. Equipe CRONE

(http://www.ims-bordeaux.fr/IMS//pages/accueilEquipe.php?guidPage=les_
equipes).

Professional Journals

1. Fractional Calculus &Applied Analysis (Fract. Calc. Appl. Anal.), ISSN 1311–
0454 Website: http://www.math.bas.bg/~fcaa/

© Science Press 2022
W. Chen et al., Fractional Derivative Modeling in Mechanics and Engineering,
https://doi.org/10.1007/978-981-16-8802-7
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2. Journal of Fractional Calculus, ISSN 0918-5402.
3. Fractional Dynamic Systems Website: http://www.fds.ele-math.com/.

Open Source Codes

1. Program package on the Adams method and finite difference method by Kai.
Diethelm

(http://www-public.tu-bs.de:8080/~diethelm/software/software.html).
2. Predictor corrector method for solving the relaxation equation

(http://www.mathworks.com/matlabcentral/fileexchange/26407-predictor-
corrector-method-for-variable-order-random-order-fractional-relaxation-equ
ation).

3. Matrix method for solving fractional partial differential equations

(http://www.mathworks.com/matlabcentral/fx_files/22071/14/content/html/
Matrix_Approach.html).

4. CRONE Toolbox (http://wWW.ims-bordeaux.fr/IMS//pages/pageAccueilP
erso.php?email=alain.outloup)

5. Mittag-Leffler function curve

(http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-
function).

(http://www.mathworks.com/matlabcentral/fileexchange/21454-genera
lized-generalized-mittag-leffler-function )

6. The random number generator of Mittag–Leffler distribution

(http://www.mathworks.com/matlabcentral/fileexchange/19392-mittag-lef
fler-random-number-generator).

7. Fractional chaotic system

(http://www.mathworks.com/matlabcentral/fileexchange/27336-fractional-
order-chaotic-systems).

8. Impulse response invariant discretization of distributed-order low-pass filter

(http://www.mathworks.com/matlabcentral/fileexchange/26868-impulse-res
ponse-invariant-discretization-of-distributed-order-low-pass-filter).

9. Digital Fractional-Order Differentiator/integrator—FIR type

(http://www.mathworks.com/matlabcentral/fileexchange/3673-digital-fracti
onal-order-differentiatorintegrator-fir-type).

10. A New IIR-type Digital Fractional-order differentiator

(http://www.mathworks.com/matlabcentral/fileexchange/3518-a-new-iir-
type-digital-fractional-order-differentiator).

11. Variable-order derivative

http://www.fds.ele-math.com/
http://www-public.tu-bs.de:8080/~diethelm/software/software.html
http://www.mathworks.com/matlabcentral/fileexchange/26407-predictor-corrector-method-for-variable-order-random-order-fractional-relaxation-equation
http://www.mathworks.com/matlabcentral/fx_files/22071/14/content/html/Matrix_Approach.html
http://wWW.ims-bordeaux.fr/IMS//pages/pageAccueilPerso.php?email=alain.outloup
http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function
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Appendix B: Related Electronic Resources of Fractional Dynamics 369

(http://www.mathworks.com/matlabcentral/fileexchange/24444-variable-
order-derivatives).

12. Fractional-order–differential-order equation solver

(http://www.mathworks.com/matlabcentral/fileexchange/13866-fractional-
order-differential-order-equation-solver).

13. Fractional-order control

(http://www.mathworks.com/matlabcentral/fileexchange/8312-ninteger).
14. Part of the program code of Professor Mark M. Meerschaert

(http://www.stt.msu.edu/~mcubed/).

Key Words

Fractional calculus

Fractional derivative

Fractional differential equation

Anomalous diffusion

Power law

Frequency-dependent dissipation

Softer matter

Path dependency

Stable distribution

Fractional Brownian motion

Fractal

Fractal derivative

Variable-order derivative

Random-order derivative

Distributed-order derivative

Fractional Fourier transform

Stretched Gaussian distribution

Fractional variational principle

Time-fractional derivative
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Spatial/space fractional derivative

Continuous-time random walk

The Relevant Pages of This Book

Owing to the limitation of our knowledge, although the book has been modified
several times, surely there are many errors or improprieties. We urge readers of this
book if you find any error or irregularity, please tell us your opinion by email, and
we will further improve the book.

Wen chen: chenwen@hhu.edu.cn.
HongGuang Sun: shg@hhu.edu.cn.
Xicheng Li: xichengli@hhu.edu.cn.
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