NANOSCIENCE AND TECHNOLOGY

Series Editors:

P. Avouris B. Bhushan K. von Klitzing H. Sakaki R. Wiesendanger

The series NanoScience and Technology is focused on the fascinating nano-world, mesoscopic physics, analysis with atomic resolution, nano and quantum-effect devices, nanomechanics and atomic-scale processes. All the basic aspects and technology-oriented developments in this emerging discipline are covered by comprehensive and timely books. The series constitutes a survey of the relevant special topics, which are presented by leading experts in the field. These books will appeal to researchers, engineers, and advanced students.

Nanoelectrodynamics

Electrons and Electromagnetic Fields in Nanometer-Scale Structures Editor: H. Nejo

Single Organic Nanoparticles Editors: H. Masuhara, H. Nakanishi, K. Sasaki

Epitaxy of Nanostructures By V.A. Shchukin, N.N. Ledentsov, D. Bimberg

Applied Scanning Probe Methods I Editors: B. Bhushan, H. Fuchs, S. Hosaka

Nanostructures Theory and Modeling By C. Delerue, M. Lannoo

Nanoscale Characterisation of Ferroelectric Materials Scanning Probe Microscopy Approach Editors: M. Alexe, A. Gruverman

Magnetic Microscopy of Nanostructures Editors: H. Hopster, H.P. Oepen

Silicon Quantum Integrated Circuits Silicon-Germanium Heterostructure Devices: Basics and Realisations By E. Kasper, D.J. Paul

The Physics of Nanotubes Fundamentals of Theory, Optics and Transport Devices

Editors: S.V. Rotkin, S. Subramoney

Single Molecule Chemistry and Physics An Introduction By C. Wang, C. Bai

Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching Application to Rough and Natural Surfaces By G. Kaupp

Applied Scanning Probe Methods II Scanning Probe Microscopy Techniques Editors: B. Bhushan, H. Fuchs

Applied Scanning Probe Methods III Characterization Editors: B. Bhushan, H. Fuchs

Applied Scanning Probe Methods IV Industrial Application Editors: B. Bhushan, H. Fuchs

Nanocatalysis Editors: U. Heiz, U. Landman

Roadmap 2005 of Scanning Probe Microscopy Editor: S. Morita

Scanning Probe Microscopy Atomic Scale Engineering by Forces and Currents By A. Foster, W. Hofer

Scanning Probe Microscopy

Atomic Scale Engineering by Forces and Currents

With 116 Figures

Adam Foster Laboratory of Physics Helsinki University of Technology Helsinki, Finland asf@fyslab.hut.fi Werner Hofer Surface Science Research Centre The University of Liverpool Liverpool L69 3BX Britain whofer@liverpool.ac.uk

Series Editors:

Professor Dr. Phaedon Avouris

IBM Research Division Nanometer Scale Science & Technology Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, NY 10598, USA

Professor Dr. Bharat Bhushan

Ohio State University Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM) Suite 255, Ackerman Road 650 Columbus, Ohio 43210, USA

Professor Dr. Dieter Bimberg

TU Berlin, Fakutät Mathematik/Naturwissenschaften Institut für Festkörperphyisk Hardenbergstr. 36 10623 Berlin, Germany Professor Dr., Dres. h. c. Klaus von Klitzing Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1 70569 Stuttgart, Germany

Professor Hiroyuki Sakaki

University of Tokyo Institute of Industrial Science 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan

Professor Dr. Roland Wiesendanger

Institut für Angewandte Physik Universität Hamburg Jungiusstr. 11 20355 Hamburg, Germany

ISSN 1434-4904

ISBN-10 0-387-40090-7 ISBN-13 978-0387-40090-7

Library of Congres Control Number: 2005936713

© 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321

springer.com

Preface

This monograph on scanning probe microscopes (SPM) has three aims: to present, in a coherent way, the theoretical methods necessary to interpret experiments; to demonstrate how experimental results are in fact enhanced by theoretical analysis; and to describe the physical processes in solids that can be analyzed by this experimental method. In all these aims we focus on high-resolution experiments as the cutting edge in SPM, offering access to physical phenomena at the atomic scale.

The presentation is directed at an audience of practitioners in the field and newcomers alike. For one group, it presents an overview of methods, which are found in a widely disparate range of publications. Moreover, the immediate relevance for the physics of scanning probe microscopes is not usually obvious. For these practitioners, we aim at providing them with a toolbox that can be used in conjunction with existing numerical methods in solid state physics. For the other group, we seek to define the range of phenomena in solid state physics where scanning probe microscopes provide the best analytical tool at present. We also aim at demonstrating, in a step-by-step fashion, how physical problems in this field can be treated experimentally, and clarified with the help of state-of-the-art theoretical methods.

The monograph has four distinct parts: Part I, which includes Chapters 1 and 2, covers the basic physical principles and the experimental implementation of the instrument. Part II, Chapters 3–5, contains the core of the theoretical framework. Part III, Chapters 6–9, explains how the theoretical results can be used to analyze experimental data. We conclude the presentation with an outlook on the field, as it presents itself today, and try to estimate its potential development in the near future.

A systematic study of the present state in scanning probe microscopy is impossible without help from a large number of experimenters and theorists. In this respect the authors are grateful to their collaborators over the years in the field, and for the insights gained in many discussions. In particular we would like to thank the following individuals:

Wolf Allers, Andres Arnau, Clemens Barth, Alexis Baratoff, Roland Bennewitz, Richard Berndt, Flemming Besenbacher, Matthias Bode, Harald Brune, Giovanni Comelli, Pedro Echenique, Sam Fain, Roman Fasel, Andrew Fisher, Fernando Flores, Andrey Gal, Aran Garcia-Lekue, Franz Giessibl, Sebastian Gritschneder, Peter Grutter, Claude Henry, Regina Hoffmann, Lev Kantorovich, Josef Kirschner, Jeppe Lauritsen, Petri Lehtinen, Alexander Livshits, Christian Loppacher, Nicolas Lorente, Edvin Lundgren, Ernst Meyer, Rodolfo Miranda, Herve Ness, Risto Nieminen, Georg Olesen, Riku Oja, Olli Pakarinen, Krisztian Palotas, Ruben Pérez, John Pethica, John Polanyi, Josef Redinger, Michael Reichling, Jeff Reimers, Neville Richardson, Federico Rosei, Alexander Shluger, Alexander Schwarz, Udo Schwarz, Peter Sushko, Peter Varga, Matt Watkins, Roland Wiesendanger, and Robert Wolkow.

A first draft of the book was sent out to several colleagues for their comments, criticism, and suggestions for possible improvements. Their feedback was invaluable for improving and clarifying the presentation, both from a theoretical angle, and from the viewpoint of experiments. We would like to thank them particularly for the time and effort they devoted to this careful reading.

Contents

Pre	face		v
Mat	them	atical Symbols	xiii
1	The 1.1 1.2 1.3	Physics of Scanning Probe Microscopes Experimental methods Theoretical methods Local probes 1.3.1 Principles of local probes	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 6 \end{array} $
	1.4 Refe	1.3.2 Surface preparation Summary	0 7 8 9
2	SPN 2.1 2.2 Refe	A: The InstrumentSPM Setups $2.1.1$ STM setup $2.1.2$ SFM setup $2.1.3$ Tip and surface preparationExperimental development $2.2.1$ STM Case 1: Au(110) and Au(111) $2.2.2$ STM Case 2: Resolution of Spin States $2.2.3$ SFM Case 1: silicon (111) 7×7 $2.2.4$ SFM case 2: cubic crystals	11 11 12 12 16 17 19 21 26 29 33
3	The 3.1	ory of Forces.Macroscopic forces.3.1.1 Van der Waals force3.1.2 Image forces3.1.3 Capacitance force3.1.4 Forces due to tip and surface charging	$37 \\ 37 \\ 37 \\ 40 \\ 40 \\ 42$

		3.1.5	Magnetic forces	. 43
		3.1.6	Capillary forces	. 43
	3.2	Micros	scopic forces	. 44
		3.2.1	Theoretical methods for calculating the microscopic	
			forces	. 45
	3.3	Forces	due to electron transitions	. 48
	3.4	Summ	ary	. 52
	Refe	rences		. 53
4	Elec	ctron 'I	Iransport Theory	. 55
	4.1	Condu	ictance channels	. 55
	4.2	Elastic	transport	. 58
		4.2.1	The scattering matrix	. 58
		4.2.2	Transmission functions	. 60
		4.2.3	A brief introduction to Green's functions	. 63
		4.2.4	Green's functions and scattering matrices	. 69
		4.2.5	Scattering matrices for multiple channels	. 70
		4.2.6	Self-energies Σ	. 72
	4.3	Noneq	uilibrium conditions	. 77
		4.3.1	Finite-bias voltage	. 78
		4.3.2	Spectral functions and charge density	. 79
		4.3.3	Spectral functions and contacts	. 81
		4.3.4	Self-energy Σ again	. 82
		4.3.5	Nonequilibrium Green's functions	. 88
		4.3.6	Electron transport in nonequilibrium systems	. 89
	4.4	Transp	port within standard DFT methods	. 92
		4.4.1	Green's function matrix	. 92
		4.4.2	General self-consistency cycle	. 94
		4.4.3	Self-energy of the leads	. 94
		4.4.4	Hartree potential and Hamiltonian of the interface	. 96
		4.4.5	Self-energies of the interface	. 96
		4.4.6	Nonequilibrium Green's functions of the interface	. 98
		4.4.7	Calculation of nonequilibrium transport properties	. 98
	4.5	Summ	ary	. 100
	Refe	rences		. 101
F	The	nanont	in the Low Conductors Posimo	109
5	Tra.	Torgoft	f Hamann(TH) approach	. 103
	0.1	5 1 1	Easy modeling: applying the Torsoff Hamann model	104
	5.9	D.I.I Dontum	bation approach	104
	0.2	Fertur 5.9.1	Explicit derivation of the tunneling surrout	. 100
		0.2.1 5.9.9	Tip states of spherical symmetry	. 107
		5.2.2 5.9.9	Magnetic tunneling junctions	110
	59	U.2.0 Londo	wagnetie tunnening junctions	. 110
	0.0	Landa 5 2 1	Contrainer and porturbation method	115
		0.0.1	scattering and perturbation method	. 119

	5.4	Keldysh–Green's function approach	. 116
	5.5	Unified model for scattering and perturbation	. 117
		5.5.1 Scattering and perturbation	. 117
		5.5.2 Green's function of the vacuum barrier	. 118
		5.5.3 Zero-order current	. 120
		5.5.4 First-order Green's function	. 123
		5.5.5 Interaction energy	. 125
	5.6	Electron–phonon interactions	.127
	5.7	Summary	. 130
	Refe	erences	. 130
6	Bri	inging Theory to Experiment in SFM	. 133
	6.1	Tip-surface interactions in SFM	. 133
	6.2	Modeling the tip	. 136
		6.2.1 Silicon-based models	. 137
		6.2.2 Ionic models	. 138
	6.3	Cantilever dynamics	. 140
		6.3.1 SFM at small amplitudes	. 144
		6.3.2 Atomic-scale dissipation	. 145
	6.4	Simulating images	. 146
		6.4.1 Test system	. 146
		6.4.2 Microscopic interactions	. 148
		6.4.3 Tip convolution	. 152
	6.5	Summary	. 155
	Refe	erences	. 156
7	Tor	pographic images	. 159
•	7.1	Setting up the systems	. 159
		7.11 Bu(0001)-O(2×2)	160
		7.1.2 Al(111)	162
	7.2	Calculating tunneling currents	. 165
		$7.2.1 \text{Ru}(0001) \text{-} \text{O}(2 \times 2)$. 166
		$7.2.2 \text{Al}(111) \dots \dots \dots \dots \dots \dots \dots \dots \dots $.170
		7.2.3 Cr(001)	. 176
		7.2.4 Fe(001)	. 177
		7.2.5 Metal alloys: PtBh(001)	178
		7.2.6 Magnetic surfaces: $Mn/W(110)$	179
	7.3	Silicon (001)	182
	1.0	7.3.1 Saturation of Si(001) by hydrogen	183
	74	Adsorbates on Si(001)	184
	1.1	7.4.1 Acetylene C_2H_2 on Si(001)	185
		7.4.2 Benzene C_cH_c on Si(001)	187
		7.4.3 Maleic anhydride $C_4 O_2 H_2$ on Si(001)	180
	75	Titanium dioxide (110)	100
	1.0	7.5.1 Simulations of ideal and defective surfaces	. 191
		, Simulation of lacar and activity buildoop	· + U +

		7.5.2 Acid adsorption on the TiO_2 (110) surface	1	192
	7.6	Calcium difluoride (111)	1	194
	7.7	Summary	2	203
	Refe	rences	2	203
-	~.			
8	Sing	gle-Molecule Chemistry		207
	8.1	Introduction		207
	8.2	Manipulation of atoms		208
	0.0	8.2.1 Modeling atomic manipulation		210
	8.3	Phonon excitation		213
		8.3.1 Theoretical procedure		215
	0.4	8.3.2 Applications		215
	8.4 D f	Summary	2	218
	Refe	rrences	••••2	220
9	Cur	rent and Force Spectroscopy	2	221
	9.1	Current spectroscopy	2	221
		9.1.1 Differential tunneling spectroscopy simulations	2	223
		9.1.2 Differential spectra on noble metal surfaces	2	229
		9.1.3 Spectra on magnetic surfaces	2	235
		9.1.4 Present limitations in current spectroscopy	2	242
	9.2	Force spectroscopy	2	246
		9.2.1 Silicon 7×7 (111) surface	2	247
		9.2.2 Calcium Difluoride (111) surface	2	249
		9.2.3 Potassium bromide (100) surface	2	252
	9.3	Summary	2	254
	Refe	erences	2	255
10				150
10		Glook	2	259
	10.1	The future	· · · · 4	209
	10.2 Dofe		· · · · 4	203 069
	nere	rences	4	205
Ap	pend	lix	2	265
	A.1	Green's functions in the interface	2	265
		A.1.1 Green's function and spectral function	2	265
		A.1.2 Contacts	2	266
		A.1.3 Electron density	2	266
		A.1.4 Zero-order Green's function	2	267
		A.1.5 Consistency check: Schrödinger equation	2	267
		A.1.6 Consistency check: definition of Green's functions	2	268
	A.2	Transmission probability	2	268
		A.2.1 Contacts	2	268
		A.2.2 Tunneling current of zero order	2	269
	A.3	First-order Green's function	2	270

A.4	Recovering the Bardeen matrix elements	271
A.5	Interaction energy	272
A.6	Trace to first order	274
	A.6.1 Term A	274
	A.6.2 Term B	276
	A.6.3 Term C	277
	A.6.4 Taking the decay into account	278
Index .		279

Mathematical Symbols

Symbol	Name	Unit	Chapter
17	D: / /: 1	1, (37)	4
V	Bias potential	$\frac{\text{volt}(V)}{V} = \frac{V}{V} + \frac{V}{$	4
В	Magnetic field	tesla $(T) = V s/m^2$	3
μ	Magnetic moment	$\mu_B = eh/2mc$	3
	Chemical potential	eV	4
H	Hamiltonian	eV	3
$\psi_{\mu}, \chi_{ u}$	Eigenvector	$(1/A)^{3/2}$	3
$\Gamma\mu\nu$	Transition rate	$1/\mathrm{s}$	3
Γ	Contact	eV	4
$I, I_{\mu\nu}$	Current	ampere (A)	3
E_{μ}, E_{ν}	Eigenvalues	eV	3
E_F	Fermi energy	${ m eV}$	4
σ	Broadening	eV	3
$\rho(\mathbf{r}), n(\mathbf{r})$	Electron density	$(1/\text{\AA})^3$	3
k	Electron wavevector, mode	$1/{ m \AA}$	4
k_F	Fermi wavevector	$1/\text{\AA}$	4
f(E)	Fermi distribution	unity	4
v_k	Electron velocity	m/s	4
R_C	Contact resistance	$\operatorname{ohm}(\Omega)$	4
G, σ	Conductance	Ω^{-1}	4
Σ	Self energy	eV	4
T	Transmission	unity	4
S	Scattering matrix	unity	4
t	Transmission coefficient	unity	4
r	Reflection coefficient	unity	4
\bar{T}	Transmission function	unity	4

Symbol	Name	Unit	Chapter
G_{in}, G_{out}	Incoming and outgoing	$(eV)^{-1}$	4
_	Green's function		
$G^R(=G_{out})$	Retarded Green's function (GF)	$(eV)^{-1}$	4
$G^A(=G_{in})$	Advanced Green's function (GF)	$(eV)^{-1}$	4
ϵ_i	Eigenvalue	${ m eV}$	4
U	Potential	${ m eV}$	4
Σ^R	Retarded self-energy (SE)	eV	4
Σ^A	Advanced self-energy (SE)	${ m eV}$	4
Γ_R	Retarded contact	${ m eV}$	4
Γ_A	Advanced contact	${ m eV}$	4
A	Spectral function	$(eV)^{-1}$	4
$\Sigma^{<}$	Nonequilibrium SE (less)	eV	4
$\Sigma^{>}$	Nonequilibrium SE (more)	eV	4
$G^{<}$	Nonequilibrium GF (less)	$(eV)^{-1}$	4
$G^>$	Nonequilibrium GF (more)	$(eV)^{-1}$	4
D	Phonon correlation function	eV	4
J	Current density	A/m^2	4
f	Force	newton (N)	3
V	Potential	electron volt (eV)	3
E	Energy	$eV = 1.6 \times 10^{-19}$ joule	3
C	Capacitance	farad (F)	3
k	Cantilever spring constant	(N/m)	6
ω_0, f_0	Cantilever equilibrium frequency	(s^{-1})	6
A_0, A	Cantilever amplitude	(m)	6
Q	Quality factor	unity	6
U_{bias}	Compensating bias in SFM	(V)	6
H	Hamaker constant	(joule)	6
R	Tip radius	(m)	6
h	Equilibrium height of cantilever	(m)	6
Δf	Frequency shift	(Hz)	6
γ_0	Normalized frequency shift	$(fN\sqrt{m})$	6