ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING

Consulting Editor

Mohammed IsmailOhio State University

ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES

by

Bram Nauta
Philips Research Laboratories

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

Nauta, Bram, 1964-

Analog CMOS filters for very high frequencies / by Bram Nauta.

p. cm. -- (The Kluwer international series in engineering and computer science. Analog circuits and signal processing)

Includes bibliographical references and index.

ISBN 978-1-4613-6591-4 ISBN 978-1-4615-3580-5 (eBook)

DOI 10.1007/978-1-4615-3580-5

1. Electric filters--Design and construction. 2. Metal oxide

semiconductors, Complementary. 3. Integrated circuits. I. Title. II. Series.

TK7872.F5N38 1993 621.3815 ' 324--dc20

92-27778

CIP

Copyright © 1993 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers, New York in 1993 Softcover reprint of the hardcover 1st edition 1993

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science + Business Media, LLC.

Printed on acid-free paper.

To Ellen

CONTENTS

PRI	PREFACE					
1 INT	RODU	CTION				
1.1	Introd	1				
1.2	Active	monolith	hic filters, an overview	1		
			log continuous-time filters	4		
	Resea	10				
2 FIL	TER S	NTHESI	S FOR (VERY) HIGH FREQUENCIES	11		
2.1	Introd	Introduction				
2.2	.2 Restrictions for very high frequencies			11		
2.3	Synth	Synthesis methods				
	2.3.1	Cascad	ed biquad synthesis	15		
		2.3.1.1	Biquads	15		
		2.3.1.2	Example	15		
		2.3.1.3	Conclusions	16		
	2.3.2	Signal f	flow graph synthesis	17		
		2.3.2.1	Introduction	17		
		2.3.2.2	Example	17		
		2.3.2.3	Conclusions	22		
	2.3.3	State-space synthesis		23		
		2.3.3.1	State-space synthesis	23		
			Example	24		
			Conclusions	27		
	2.3.4		synthesis	28		
			Gyrators	28		
			Gyrator filter synthesis	31		
			Examples	34		
	005		Conclusions	36		
	2.3.5		d resonator bandpass filters	36		
		2.3.5.1	Design technique	36		
		2.3.5.2	Examples	39		

		2.3.5.3 Conclusions	40
	2.3.6	Comparison of synthesis methods	41
2.4	4 Sensitivity		
	2.4.1	Sensitivity of LC-ladder filters	42
	2.4.2	Sensitivity of gyrator filters	42
	2.4.3	Sensitivity of other filters	46
2.5	Frequ	ency and impedance level scaling	47
2.6	Conclusions		
3 EFF	ECT O	F NON-IDEALITIES	49
3.1	Introduction		
3.2	Effect	of finite integrator quality factor	49
	3.2.1	Integrator model	49
	3.2.2	Effect of finite integrator quality factor	53
	3.2.3	Gyrators	62
	3.2.4	Canceling of effects of overlap capacitances	
		in a balanced gyrator	65
3.3	Dynar	mic range	70
	3.3.1	Noise	70
	3.3.2	Distortion	73
	3.3.3	Noise and distortion gives dynamic range	78
3.4	Dissip	ation and chip area	79
3.5	Capacitors		81
3.6	Conclusions		
4 TR/	ANSCO	NDUCTOR DESIGN	85
4.1	The N	MOS Transistor	85
4.2	Linear	MOS transconductors, an overview	87
4.3			92
4.4	VHF t	ransconductor, basic operation	94
	4.4.1	V-I conversion	95
	4.4.2	Common-mode control and DC-gain enhancement	97
	4.4.3	Conclusions	101
4.5	Detaile	d analysis and measurements	102
	4.5.1	Output conductance	103
	4.5.2	Transconductor bandwidth	105

	4.5.3	Series resistances in capacitors	111
	4.5.4	Transconductor-C integrator quality factor	112
	4.5.5	Noise	117
	4.5.6	Distortion	120
		4.5.6.1 Nonlinearities in V-I conversion	121
		4.5.6.2 Nonlinearities in output conductance	125
	4.5.7	Dynamic range	130
	4.5.8	Dissipation	132
	4.5.9	Parasitic capacitors	132
4.6 (Conclus	ions	135
_ ==:			
5 TUI			137
5.1	Introd		137
	5.2 The VCO tuning loop		139
5.3		y factor tuning	141
		Basic principle	141
		Implementation	144
- 4		Experimental results	148
5.4		y voltage unit	149
		Introduction	149
		Basic principle	152
	5.4.3	Implementations	154
5.5	Conclu	sions	161
6 FIL	TER RE	EALIZATIONS	163
6.1	Introd	uction	163
6.2	Third-	order elliptic filters	163
	6.2.1	Filter design	163
	6.2.2	Experimental setup	168
	6.2.3	Experimental results	170
	6.2.4	·	182
6.3	TV IF Filter		
	6.3.1	Introduction	183

6.3.2 TV front-end

6.3.3 Filter specification

Contents

ix

184

186

x Contents

	6.3.4	IF filter design	189
	6.3.5.	Experimental results	199
	6.3.6	Conclusions, TV IF filter.	209
7 CO	NCLUS	BIONS	211
7.1	Introd	duction	211
7.2	Sumn	mary	211
7.3	Origin	nal contributions to the thesis	214
7.4	Recor	mmendations for further research	216
REFE	219		
SUBJ	229		

PREFACE

This book deals with the design of fully integrated analog CMOS filters for very high frequencies. It describes various synthesis methods and electronic circuit designs suitable for filters with cut-off frequencies ranging from the low megahertz range to several hundreds of megahertz. The book is intended for engineers in research or development and advanced level students.

Today IC technology is widely used for fully integration of electronic systems. These systems are in general for a large part realized using digital techniques implemented in CMOS technology. The low power dissipation, high packing density, high noise immunity, ease of design and the relative ease of scaling are the driving forces of CMOS technology for digital applications. Parts of these systems cannot be implemented in the digital domain and will remain analog. In order to achieve complete system integration these analog functions are preferably integrated in the same CMOS technology. An important class of analog circuits that need to be integrated in CMOS are analog filters.

This book deals with very high frequency (VHF) filters, which are filters with cut-off frequencies ranging from the low megahertz range to several hundreds of megahertz. Up till recently the maximal cut-off frequencies of CMOS filters were limited to the low megahertz range. By applying the techniques presented in this book the limit could be pushed into the true VHF domain, and integrated VHF filters became feasible. Application of these VHF filters can be found in the field of communication, instrumentation and control systems. For example pre and post filtering for high-speed AD and DA converters, signal reconstruction, signal decoding, etc.

The general design philosophy used in this book is, to allow only the absolute minimum of signal carrying nodes throughout the whole filter. This strategy starts at the filter synthesis level and is extended to the level of electronic circuitry. The result is a filter realization in which all capacitors (including parasitics) have a desired function. The advantage of this technique is that high-frequency parasitic effects (parasitic poles/zeros) are minimally present.

The first part of the book (chapters 1-3) is on general design for VHF filters, including synthesis methods and analysis of the effects of various non-idealities. The second part (chapters 4-6) describes more specific electronic circuitry suitable for implementing these VHF filters in CMOS technology. This part also includes the experimental results of several demonstration filters. An outline of each chapter is

given below.

Chapter 1 gives an introduction to continuous-time integrated filters, including an historical overview. In chapter 2 various synthesis methods for VHF, such as cascaded biquad, signal flow graph, state-space, gyrator and couple resonator synthesis, are described. All methods use transconductors and capacitors as building blocks and result in filter topologies with on every node a desired capacitance. The methods are compared with respect to sensitivity and scaling properties. In chapter 3 the effects of non-idealities in the transconductor realizations on filter performance is discussed. These effects are illustrated with calculations carried out on a second order bandpass filter. Effects considered are: finite integrator quality factor, noise, distortion, dynamic range, dissipation and chip area. Several analytical expressions are derived giving insight in these effects. Chapter 4 deals with transconductor design. A transconductor is presented that has high linearity, and a very large bandwidth (10GHz in $3\mu m$ CMOS) thanks to the absence of internal nodes. The parasitic output resistance of the transconductor is compensated and thus a useful building block for VHF filters is obtained. A detailed analysis of the transconductor is given, including non-quasi-static transistor operation. A link is made with parameters derived in chapter 3. Chapter 5 deals with automatic frequency and quality factor tuning. A special quality factor tuning circuit without signal carrying nodes is presented and analyzed. Furthermore a method is presented for making a wide-band, low-ohmic supply voltage regulation. This regulation is required to tune the cut-off frequency and quality factors of the filters built with the transconductors of chapter 4. In chapter 6 experimental results of 5 demonstration filters designed in 3

m CMOS filters are: four third-order elliptic filters frequencies ranging from 0.5MHz to 100MHz, and one 22-nd order TV-IF filter with 36MHz center frequency. In chapter 7 finally a summary and conclusions are given.

This book was originally a Ph.D. thesis. It describes the results of a research project carried out at the University of Twente, The Netherlands. The project dated from 1987 to 1991 and was sponsored by the Dutch Innovative Research Program (IOP-IC Technology). The author would like to acknowledge the helpful discussions with many colleagues and students at the University of Twente, University of Delft and Philips. Special thanks are given to Prof. Hans Wallinga and Prof. J. Davidse (Delft University of Technology) for fruitful discussions and for their useful and detailed comment on the manuscript.

ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES