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Preface

For several decades the semimartingale processes were the best model in or-
der to implement many ideas. The stochastic calculus for semimartingales
and the general theory of stochastic processes, which are closely connected
to the theory of stochastic integration and stochastic differential equations,
were originated by N. Wiener (Wie23), P. Lévy (Le48), K. Itô (Itô42), (Itô44),
(Itô51), A.N. Kolmogorov (Kol31), W. Feller (Fel36), J.L. Doob, M. Loéve,
I. Gikhman and A. Skorohod (the list of related papers and books is very long
and we do not mention it here in full). Those ideas were developed further by
several authors, among them there are K. Bichteler (Bi81), C.S. Chou, P.A.
Meyer and C. Stricker (CMS80), K.L. Chung and R.J. Williams (ChW83),
C. Dellacherie (Del72), C. Dellacherie and P.A. Meyer (DM82), C. Doléans-
Dade and P.A. Meyer (DDM70), H. Föllmer (Fol81a), P.A. Meyer (Me76) and
M. Yor (Yor76). These theoretical data were fruitfully discussed and summa-
rized in the monographs of J. Jacod (Jac79), R. Elliott (Ell82), P.E. Kopp
(Kop84), M. Métivier and J. Pellaumail (MP80), B. Øksendal (Oks03), P.
Protter (Pro90). Limit theorems in the most general semimartingale frame-
work were proved by J. Jacod and A.N. Shiryaev (JS87). A very convenient
way to consider financial markets is to insert them into semimartingale mod-
els, as perfectly demonstrated by I. Karatzas and S. Shreve (KS98), A.N.
Shiryaev (Shi99), F. Delbaen and W. Schachermayer (DS06). The Malliavin
calculus for the Wiener process was presented in the books of P. Malliavin
(Mal97) and D. Nualart (Nua95). However, in recent years the well-studied
theory of semimartingales turns out to be insufficient in order to describe
many phenomena. On one hand, telecommunication connections, asset prices
and other objects have “long memory”. This effect cannot be described with
the help of such processes as the Wiener process, which has independent in-
crements and has no memory. On the other hand, the concept of turbulence in
hydrodynamics can be described by self-similar fields with stationary (depen-
dent) increments (A.M. Yaglom (Yag57), A. Monin and A.M. Yaglom (MY67)
and A.M. Yaglom (Yag87)).
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A.N. Kolmogorov (Kol40) was the first to consider continuous Gaussian
processes with stationary increments and with the self-similarity property; it
means that for any a > 0 there exists b > 0 such that

Law(X(at); t ≥ 0) = Law(bX(t); t ≥ 0).

It turns out that such processes with zero mean have a special correlation
function:

EX(t)X(s) =
1
2
(|s|2H + |t|2H − |t− s|2H

)
,

where 0 < H < 1. A.N. Kolmogorov called such Gaussian processes “Wiener
Spirals” (“Wiener screw-lines”). Later, when the papers of H.E. Hurst (Hur51)
and H.E. Hurst, R.P. Black and Y.M. Simaika (HBS65), devoted to long-term
storage capacity in reservoirs, were published, the parameter H got the name
“Hurst parameter”. The stochastic calculus of the processes mentioned above
originated with the pioneering work of B.B. Mandelbrot and J.W. van Ness
(MvN68) who considered the integral moving average representation of X via
the Wiener process on an infinite interval and called this process fractional
Brownian motion (fBm). Note that B.B. Mandelbrot worked with fractional
processes during a long period and his later results concerned the fractals and
scaling were summarized in the book (Man97). Note also that it was proved
in the paper (GK05) that the moving average representation of fBm is unique
in the class of the right-continuous, nondecreasing concave functions on R+.
The first result where fBm appeared as the limit in the Skorohod topology
of stationary sums of random variables was obtained by M. Taqqu (Taq75);
another scheme of convergence to fBm in the uniform topology was considered
in (Gor77). Spectral properties of fBm were studied by G. Molchan (Mol69),
G. Molchan and J. Golosov (MG69), G. Molchan (Mol03), and later by K.
Dzhaparidze and H. van Zanten (DvZ05), (RLT95), (SL95).

The next intensive wave of interest in fBm arose in the 1990s. It can be
explained by various applications of fBm and other long-memory processes in
teletraffic, finances, climate and weather derivatives. The paper (DU95) was
one of the first paper devoted to stochastic analysis for fBm. Note that fBm
is neither a semimartingale (except the case H = 1/2 when it is a Brownian
motion) nor a Markov process. However, it is closely connected with fractional
calculus and can be represented as a “fractional integral” (with the help of a
comparatively complicated hypergeometric kernel) via the Wiener process not
only on infinite, but also on finite intervals. This was stated by I. Norros, E.
Valkeila and J. Virtamo (NVV99) and C. Bender (Ben03a). Such a representa-
tion, together with the Gaussian property of fBm and the Hölder property of
its trajectories (fBm with Hurst index H is Hölder up to order H) permits us to
create an interesting and specific stochastic calculus for fBm. The development
of the theory of long-memory processes moved in several directions: stochastic
integration, stochastic differential equations, optimal filtering, financial appli-
cations, statistical inference, from one side (these topics create the main points
of this book) and a lot of other theoretical problems and applications, from
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the other side. In our Preface we mention for the most part the papers that
are not mentioned and used in the text of the book but play a very im-
portant role in the development of the theory of long-memory processes.
For example, series, spectral and wavelet analysis for fBm was considered in
(AS96), (ALP02a), (Mas93), (Mas96), (RZ91), (DvZ05), (DF02), (DvZ04),
(SL95), (Mac81b); local times, the Tanaka formula, the law of the iter-
ated logarithm, maximal properties and the Kallianpur–Robbins law for fBm
and related processes were studied in (Ber69), (CNT01), (HO02), (HP04b),
(Sin97), (HOS05), (GRV03), (KK97), (KM96), (KO99), (Ros87), (KM96),
(Kono96), (Sh96), (ElN93), (Tal96) and (Taq77). Furthermore, stochastic
evolution equations driven by fBm were investigated in the papers (AG03),
(CD01), (MN03), (TTV03) and some methods of construction of fBm were
proposed in (Yor88) and (Sai92).

R.J. Adler and G. Samorodnitsky (AS95) considered super processes con-
nected to fBm. The Clark–Ocone theorem for fBm was established in (BE03)
and (AOPU00); forward and symmetric integrals for fBm were constructed in
(BO04), (CN02), (Zah02b) (note that the general theory of forward, backward
and symmetric integrals was created by F. Russo and P. Vallois in (RV93),
(RV95a), (RV95b), (RV98) and (RV00)).

Detection and prediction problems were discussed in the papers (BP88),
(GN96), (Dun06); the stochastic maximum principle for a controlled process
governed by an SDE involving fBm was proved in (BHOS02); stochastic Fu-
bini theorem for fBm was studied in (KM00); time rescaling for fBm was in-
vestigated in (Mac81a); Hausdorff measure and packing dimension connected
to fBm were considered in (Tal95), (TX96), (Xiao91), (Xiao96), (Xiao97a),
(Xiao97b); estimation of the parameters of long-memory processes, in particu-
lar, the estimates of the Hurst parameter are presented in (Ber94), (BGK06),
(BG96), (BG98), (GR03a). Markov properties of some functionals connected
with an fBm were considered in (CC98).

Rough path analysis for fBm was studied in (CQ02) and some of its ap-
plications were considered in the manuscript (HN06); the properties of the
Gaussian spaces generated by an fBm were established in (PT01); distribution
of functionals connected with fBm was obtained in (CM96), (LN03), (ElN99)
(Sin97), (Zha96), (Zha97); the Skorohod–Stratonovich integral for fBm was
studied in (Dec01), (ALN01), (AMN01), (AN02); the properties of spectral ex-
ponent of fBm were established in (LP95); multi-parameter fractional Brown-
ian fields were studied in (ENO02), (Kam96), (ALP02b), (Lind93), (Gol84),
(KK99), (OZ01), (PT02a), (Tal95), (TV03), (TT03), (Tud03), (MisIl03),
(MisIl04), (MisIl06), (Mur92); set-parametrized fractional Brownian fields
have been studied in the papers (HM06a), (HM06b); asymptotic properties
of two-dimensional fractional Brownian fields were considered in (BaNu06).
The Malliavin calculus for fBm was developed in (Hu05), (Pri98), (Nua03),
(Nua06); fBm in Hilbert space was constructed and investigated in (DPM02).
The papers (HN04), (KLeB02), (AHL01), (ALN01), (CKM03) are devoted
to stochastic fractional Ornstein–Uhlenbeck, Riesz–Bessel and Lévy type
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processes. An interesting formula of transformation of fBm with Hurst in-
dex H into fBm with index 1−H was obtained in (Jost06). Mention also the
papers (DU98), (Daye03) and forthcoming book (BHOZ07).

Note that fBm has a long-memory property only for H ∈ (1/2, 1). In
the case H ∈ (0, 1/2) it is a process with short memory. The theory of such
processes is quite different. FBm with H ∈ (0, 1/2) was studied in (ALN01),
(AMN00), (AI04) and (CN05); simulation of fBm and various applications
of fBm were considered in (CM95), (CM96), (Nor95), (Yin96), (Dun00),
(Dun01), (DF02), (Seb95) and (Sin94).

Fractional Brownian motion as a model of financial markets was proposed
in a large number of papers. (See, for example, (AM06), (BE04), (BSV06),
(BO02), (BH05), (Che01b), (Dun04), (EvH01), (EvH03), (Gap04), (HO03),
(HOS03), (HOS05), (Rog97), (Sch99), (Shi01), (Sot01), (SV03), (WRL03),
(WTT99), (Wyss00) and (Zah02a).) Financial markets with memory were
considered in (AI05a), (AI05b), (INA07) and (IN07). Moreover, filtering
and prediction problems were considered in (CD99), (INA06), (KKA98b),
(LeB98), (KLeBR99), (KLeB99), (KLeBR00), (Dun06) and (GN96). In addi-
tion, some related applied problems were studied, e.g., in (MS99), (Nar98),
(Nor95), (Nor97), (Nor99). An estimate of ruin probabilities for the models
with the long-range dependence was studied in (Mis05), (HP04b). Statistical
inferences for the processes related to fBm are a very extended area. The
major contributions to this theory were made, among other authors, by M.
Taqqu and P.M. Robinson. We mention here also the papers of P. Doukhan,
A. Khezour and G. Lang (DKL03), L. Giraitis and P.M. Robinson (GR03b),
and the papers (DH03), (HH03), (KS03), (MS03), (BLOPST03), (WTT99).
Of course, our list of the papers devoted to the theory of fBm is not exhaus-
tive. The book of P. Doukhan, G. Oppenheim, M. Taqqu (editors): Theory
and Applications of Long-range Dependence (Birkhäuser, Boston 2003) con-
tains papers devoted to different aspects of stochastic calculus for fractional
Brownian motion and related processes. We mention, in particular, the papers
of D. Surgailis (Sur03a), (Sur03b) and M. Maejima (Mae03), devoted to cen-
tral and non-central limit theorems, where the asymptotic distribution is not
the classical standard normal and the limit process is not the Wiener process.
The processes of moving average type are obtained as the limiting ones for
increasing sums of some stationary sequences that do not have finite vari-
ance. See also the papers (Ho96), (Dec03), (Do03), (Mol03), (PT03), (Taq03),
(SW03) from this edition describing stochastic analysis and other aspects of
the processes with long memory; papers concerning statistical problems were
mentioned above. It is clear from the aforesaid descriptions and citations that
there exists the urgent need to systematize the existing results devoted to frac-
tional Brownian motion, to select the best of them (in the author’s opinion)
and to present them in appropriate form. Also, some well-known results admit
generalizations, and it can be done without great technical difficulties. The
present book is devoted to the solution of these two problems. Of course, we
cannot claim the complete presentation of all the results concerning fractional
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Brownian motion; it is impossible as the reader can see from aforesaid list.
So, we choose only the following topics: Wiener and stochastic integration,
Itô formula, Fubini and Girsanov theorems, stochastic differential equations,
filtering in the mixed Brownian–fractional-Brownian models, financial appli-
cations, some statistical inferences for fractional Brownian motion and the
stochastic calculus of multi-parameter fractional Brownian processes. These
fields coincide with the main directions of our own interest in the long-memory
effect.

The book consists of six chapters divided into 41 sections. Chapter 1 is
devoted to the Wiener integration (when the integrand is nonrandom) with
respect to fractional Brownian motion. Section 1.1 is devoted to the principal
definitions from fractional calculus. We recall the notions of fractional integrals
and derivatives both for finite and infinite intervals, formulate the Hardy–
Littlewood theorem, give the Fourier transformation for fractional integrals
and derivatives and calculate the values of some important fractional deriva-
tives. Section 1.2 contains some elementary properties of fractional Brownian
motion including the simplest spectral representations. Section 1.3 contains
the Mandelbrot–van Ness representation of fractional Brownian motion via the
Wiener process and some fractional kernels on real axes. These kernels are the
prototypes for the future definition of the Wiener integration w.r.t. fBm. Sec-
tions 1.4 and 1.5 describe the construction of fractional Brownian motion and
fractional noise on white noise space. Such space is convenient for applications
since it is possible to consider mixed Brownian–fractional-Brownian processes
and linear combinations of fractional Brownian motions with different Hurst
indices on such space and to apply Wick calculus to them. It is proved that
any fractional noise with H ∈ [1/2, 1] belongs to the Hida distribution space
S∗ (we establish the corresponding estimates for the negative norms). The re-
lations between motion and noise are established as in the usual Wick calculus
for the Wiener noise. In Section 1.6 we return to fBm on arbitrary space. The
section contains the definition of the Wiener integral with respect to fBm and
various relations between different “integrable spaces” related to fBm. Section
1.7 is devoted to (non) completeness of the Gaussian spaces generated by fBm,
in connection with their norms. Section 1.8 contains the representation of fBm
via the Wiener process on any finite interval [0, T ] and some representations
for auxiliary processes. Sections 1.9 and 1.10 present moment estimates for
Wiener integrals w.r.t. fractional Brownian motion. Using the conditions of
continuity of the trajectories of Wiener integrals w.r.t. fBm (Section 1.11) we
extend in Section 1.12 the upper moment estimates to solutions of very simple
stochastic differential equations containing Wiener integrals. Section 1.13 con-
tains the proof of the stochastic Fubini theorem for the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.14 deals with such Gaussian processes
that can be transformed into martingales with the help of some kernels
(fBm can be transformed into the Wiener process with the help of hyper-
geometric kernels). Section 1.15 is devoted to different convergence schemes,
in which fBm is approximated by the sequence of semimartingales, and even
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by the continuous processes with bounded variation. In the last case Wiener
integrals w.r.t. fractional Brownian motion also can be approximated. Sec-
tion 1.16 demonstrates the Hölder properties of the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.17 contains some auxiliary estimates
for fractional derivatives of fBm and for the Wiener integrals w.r.t. Wiener
process via the Garsia–Rodemich–Rumsey inequality. Section 1.18 contains
one- and two-sided bounds for power variations for fBm and Wiener integrals
w.r.t. fBm. Section 1.19 contains the result stating that some conditions of
quadratic variation of a stochastic process supply that this process is an fBm;
it is kind of generalization of the Lévy theorem for the Wiener process. Section
1.20 concludes; it describes Wiener fields on the plane and related fractional
integrals and derivatives.

Chapter 2 is devoted to stochastic integration w.r.t. fractional Brownian
motion and other aspects of stochastic calculus of fBm. There exist several ap-
proaches to stochastic integration w.r.t. fractional Brownian motion: pathwise
integration, Wick integration, Skorohod integration, isometric integration and
some others that are not mentioned here. Pathwise stochastic integration in
fractional Sobolev-type spaces and in fractional Besov-type spaces is described
in Section 2.1 and is generalized to fBm fields in Section 2.2. Wick integra-
tion is considered in Section 2.3 and is reduced to the integration w.r.t. white
noise. Two approaches to the Skorohod integration and their connections with
forward, backward and symmetric integration are discussed in Section 2.4.
Isometric integration is the subject of section 2.5. The stochastic Fubini the-
orem and various versions of the Itô formula and the Girsanov theorem are
contained in Sections 2.6–2.8 which conclude Chapter 2.

Chapter 3 is devoted to different properties of stochastic differential equa-
tions involving fBm. Section 3.1 contains the conditions of existence and
uniqueness of solution of a “pure” stochastic differential equation containing
a pathwise integral w.r.t. fBm and the estimates of its solution. Most of the
theorems are stated in the spirit of the paper (NR00) but the results of Zähle
(Zah99) on existence of local solutions are also presented since they are used
later for construction of global solutions in the cases when other results cannot
help. Some properties of SDEs with stationary coefficients including differen-
tiability and local differentiability of the solutions are presented in Subsection
3.1.4. Existence and uniqueness of solutions of SDEs with two-parameter frac-
tional Brownian fields is contained in Subsection 3.1.6. Semilinear “pure” and
“mixed” SDEs are considered in detail in Subsections 3.1.5 and 3.2.1. The rate
of convergence of Euler approximations of solutions of SDEs involving fBm is
the subject to Section 3.4. SDEs with fractional white noise are considered in
Section 3.3, and a detailed discussion of SDEs with additive Wiener integrals
w.r.t. fBm is presented in Section 3.5.

Chapter 4 is devoted to filtering problems in the mixed fractional models.
Section 4.1 considers the case when the signal process is modeled by mixed sto-
chastic differential equations involving both fractional Brownian motion and
the Wiener process and the observation process is the sum of the fractional
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Brownian integral and the term of bounded variation. Optimal filtering in con-
ditionally Gaussian linear systems with mixed signals and fractional Brownian
observation is studied in Section 4.2. In these sections we consider only non-
random integrands in all the stochastic integrals. In Section 4.3 we make an
attempt to generalize the model and consider polynomial integrands depend-
ing on fBm.

Chapter 5 is devoted to financial models involving fBm. In general, fi-
nancial markets fairly often have a long memory and it is a natural idea to
model them with the help of fBm or with the help of some of its modifica-
tions. Nevertheless, it is not so easy to do this because the market model
is “good” when it does not admit arbitrage and the models involving frac-
tional Brownian motion are not arbitrage-free. So, this chapter is devoted to
some methods of construction of the long-memory arbitrage-free models and
to the discussion of different approaches to this problem. In Section 5.1 we
introduce the mixed Brownian–fractional-Brownian model and establish con-
ditions that ensure the absence of arbitrage in such a model. In Section 5.2
we consider a fractional version of the Black–Scholes equation for the mixed
Brownian-fractional Brownian model which contains pathwise integrals w.r.t.
fBm, discuss possible applications of Wick products in fractional financial
models and produce Black–Scholes equation for the fractional model involv-
ing Wick product w.r.t. fBm.

Chapter 6 is devoted to the solution of some statistical problems involving
fBm. The choice of the first problem which is solved in Sections 6.1 and
6.2 was evoked by some financial reasonings considered in Chapter 5. More
exactly, we try to determine which of the two geometric Brownian motions
from (5.2.6) serves as the better model for the real financial market, i.e. we test
the complex hypothesis concerning the shifts in the geometric fBm; one of the
shifts corresponds to the pathwise integral, and another to the Wick integral.
In Section 6.3 we consider the existence and the properties of estimates of the
shift parameter in different “pure” and “mixed” models involving fBm and,
possibly, the Wiener process, which can be independent of or, conversely,
“linearly dependent” on fractional Brownian motion.

I am grateful to Esko Valkeila who invited me several times to Helsinki Uni-
versity during the period of 1997-2005 and presented a possibility for fruitful
work and discussion of the problems connected to fractional Brownian mo-
tion and related topics. Also, I am grateful to David Nualart for inviting me
to Barcelona University during 2001–2003 when we discussed the problems
connected to stochastic differential equations involving fBm. My thanks to all
my other coauthors, with whom we have written the series of papers devoted
to the stochastic calculus for fractional Brownian motion, especially to Jean
Memin, Alexander Kukush, Georgij Shevchenko and Taras Androshchuk. My
special thanks to Murad Taqqu and Christian Bender for their useful sug-
gestions concerning contents of the minicourse of the lectures devoted to the
stochastic calculus for fBm that I delivered in Helsinki Technology University
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in May 2005. I wish to thank also Celine Jost who has carefully read a part
of the text of this book and made a lot of improvements.

Kiev, Yuliya Mishura
April 24 2007
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