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Preface

The rapid development of computer technology has started to yield many types of
high-dimensional data and to enable us to deal with them well. Indeed,
high-dimensional data appear in numerous fields such as web data science, geno-
mics, telecommunication, atmospheric science, financial engineering, and others.
With such a background, theory of statistical inference with high dimension has
received much attention in recent years.

High-dimensional data in general are hard to handle, and ordinary or traditional
methods in statistics are frequently inapplicable for them. This has inspired
statisticians to develop new methodology in high dimension from both theoretical
and practical aspects. Most statisticians’ interests seem to be in development of
efficient algorithms for statistical inference and in investigation of their asymptotic
properties with the dimension going to infinity. On the other hand, there does not
exist much literature in high-dimensional problems from a decision-theoretic point
of view.

Statistical decision theory is the study of how to make decisions in the presence
of statistical knowledge under uncertainty. It has been studied from around the
1940s and the researchers have already been produced many important and inter-
esting results. Probably the most surprising result in decision-theoretic estimation is
the inadmissibility of the sample mean vector to estimate a multivariate normal
population mean. In the multivariate normal mean estimation, the sample mean
vector is the maximum likelihood estimator and the uniformly minimum variance
unbiased estimator, and thus it has been recognized to be optimal for a long time.
However, in 1956, Charles Stein showed that the sample mean vector is admissible
for the one- and two-dimensional cases but inadmissible for three or more
dimensional cases. A little after that, a specific estimator, called a shrinkage esti-
mator, was provided for exactly dominating the sample mean vector. To this day,
various extensions of shrinkage estimation have been achieving in other statistical
models.

The purpose of this book is to give a brief overview of shrinkage estimation in
matrix-variate normal distribution model. More specifically, it includes recent
techniques and results in estimation of mean and covariance matrices with a
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high-dimensional setting that implies singularity of the sample covariance matrix.
Such a high-dimensional model can really be analyzed by using the same argu-
ments as for a low-dimensional model. Thus this book takes a unified approach to
both high- and low-dimensional shrinkage estimation.

Theory of shrinkage estimation for matrix parameters needs many mathematical
tools. In Chap. 1, we begin by briefly introducing basic terminology of
decision-theoretic estimation and a mathematical technique in shrinkage estimation.
Chapter 2 defines the notation with respect to matrix algebra and collects useful
results in terms of the Moore-Penrose inverse, the Kronecker product and matrix
decompositions. Chapter 3 provides the definition and some properties of
matrix-variate normal distribution and related distributions, including the Wishart
distribution and joint distributions corresponding to the Cholesky and the eigen-
value decompositions of the Wishart matrix. With a unified treatment for high- and
low-dimensional cases, some related distributions are discussed. Chapter 4 intro-
duces a multivariate linear model and derives its canonical form. To find
decision-theoretically optimal estimators, we usually direct our attention to several
classes of invariant estimators. Therefore Chap. 4 briefly explains group invariance
in the canonical form as well. A key tool in shrinkage estimation is an integration
by parts formula, called the Stein identity. Chapter 5 gives a generalized Stein
identity on matrix-variate normal distribution. Moreover we list some results on
matrix differential operators and in particular show useful differentiation formulae
concerning the Moore-Penrose inverse. Chapter 6 addresses the problem of esti-
mating the mean matrix in matrix-variate normal distribution model. A unified
result on matricial shrinkage estimation is presented, and extensions and applica-
tions are given for more general models. Chapter 7 deals with the problem of
estimating the covariance matrix relative to an extended Stein loss and provides
various unified estimation procedures for high- and low-dimensional cases. Some
related topics to covariance estimation are also touched.

The authors would like to thank Prof. M. Akahira for giving us the opportunity
of publishing this book. The work of the first author was supported in part by
Grant-in-Aid for Scientific Research (18K11201) from the Japan Society for the
Promotion of Science (JSPI). The work of the second author was supported in part
by Grant-in-Aid for Scientific Research (18K11188) from the JSPI.

Tokyo, Japan Hisayuki Tsukuma
March 2020 Tatsuya Kubokawa

vi Preface



Contents

1 Decision-Theoretic Approach to Estimation . . . . . . . . . . . . . . . . . . . 1
1.1 Decision-Theoretic Framework for Estimation . . . . . . . . . . . . . . . 1
1.2 James-Stein’s Shrinkage Estimator . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Unbiased Risk Estimate and Stein’s Identity . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Nonsingular Matrix and the Moore-Penrose Inverse . . . . . . . . . . . 9
2.3 Kronecker Product and Vec Operator . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Matrix Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Matrix-Variate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . 13
3.1.2 Jacobians of Matrix Transformations . . . . . . . . . . . . . . . . . 14
3.1.3 The Multivariate Gamma Function . . . . . . . . . . . . . . . . . . 16

3.2 The Matrix-Variate Normal Distribution . . . . . . . . . . . . . . . . . . . . 17
3.3 The Wishart Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 The Cholesky Decomposition of the Wishart Matrix . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Multivariate Linear Model and Group Invariance . . . . . . . . . . . . . . 27
4.1 Multivariate Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 A Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Group Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



5 A Generalized Stein Identity and Matrix Differential Operators . . . . 35
5.1 Stein’s Identity in Matrix-Variate Normal Distribution . . . . . . . . . 35
5.2 Some Useful Results on Matrix Differential Operators . . . . . . . . . 37
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Estimation of the Mean Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 The Unified Efron-Morris Type Estimators Including

Singular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.1 Empirical Bayes Methods . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 The Unified Efron-Morris Type Estimator . . . . . . . . . . . . . 49

6.3 A Unified Class of Matricial Shrinkage Estimators . . . . . . . . . . . . 50
6.4 Unbiased Risk Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Examples for Specific Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5.1 The Unified Efron-Morris Type Estimator . . . . . . . . . . . . . 55
6.5.2 A Modified Stein-Type Estimator . . . . . . . . . . . . . . . . . . . 56
6.5.3 Modified Efron-Morris Type Estimator . . . . . . . . . . . . . . . 58

6.6 Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6.1 Positive-Part Rule Estimators . . . . . . . . . . . . . . . . . . . . . . 59
6.6.2 Shrinkage Estimation with a Loss Matrix . . . . . . . . . . . . . 62
6.6.3 Application to a GMANOVA Model . . . . . . . . . . . . . . . . 63
6.6.4 Generalization in an Elliptically Contoured Model . . . . . . . 67

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Estimation of the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Scale Invariant Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Triangular Invariant Estimators and the James-Stein Estimator . . . 79

7.3.1 The James-Stein Estimator . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.2 Improvement Using a Subgroup Invariance . . . . . . . . . . . . 81

7.4 Orthogonally Invariant Estimators . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.1 Class of Orthogonally Invariant Estimators . . . . . . . . . . . . 84
7.4.2 Unbiased Risk Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Improvement Using Information on Mean Statistic . . . . . . . . . . . . 96
7.5.1 A Class of Estimators and Its Risk Function . . . . . . . . . . . 97
7.5.2 Examples of Improved Estimators . . . . . . . . . . . . . . . . . . . 98
7.5.3 Further Improvements with a Truncation Rule . . . . . . . . . . 100

7.6 Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.6.1 Decomposition of the Estimation Problem . . . . . . . . . . . . . 102
7.6.2 Decision-Theoretic Studies Under Quadratic Losses . . . . . . 104

viii Contents



7.6.3 Estimation of the Generalized Variance . . . . . . . . . . . . . . . 105
7.6.4 Estimation of the Precision Matrix . . . . . . . . . . . . . . . . . . 106

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Contents ix


	Preface
	Contents



