Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Zchaff2004: An Efficient SAT Solver

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3542))

Abstract

The Boolean Satisfiability Problem (SAT) is a well known NP-Complete problem. While its complexity remains a source of many interesting questions for theoretical computer scientists, the problem has found many practical applications in recent years. The emergence of efficient SAT solvers which can handle large structured SAT instances has enabled the use of SAT solvers in diverse domains such as electronic design automation and artificial intelligence. These applications continue to motivate the development of faster and more robust SAT solvers. In this paper, we describe the popular SAT solver zchaff with a focus on recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook, S.A.: The complexity of theorem-proving procedures. In: Third Annual ACM Symposium on Theory of Computing (1971)

    Google Scholar 

  2. Kautz, H., Selman, B.: Planning as Satisfiability. In: European Conference on Artificial Intelligence (1992)

    Google Scholar 

  3. Stephan, P., Brayton, R., Sangiovanni-Vencentelli, A.: Combinational test generation using satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15, 1167–1176 (1996)

    Article  Google Scholar 

  4. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International Symposium on Software Testing and Analysis, Portland, OR (2000)

    Google Scholar 

  5. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW. In: 38th DAC, pp. 226–231. ACM Press, New York (2001)

    Google Scholar 

  6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfiability (1993)

    Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35, 394–397 (1962)

    Google Scholar 

  11. Gunnar Stålmarck: System for Determining Propositional Logic Theorems by Applying Values and Rules to Triplets that are Generated from Boolean Formula, United States Patent. Patent Number 5,276,897 (1994)

    Google Scholar 

  12. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the Satisfiability (SAT) Problem: A Survey. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1997)

    Google Scholar 

  13. Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-Based Layout Revisited: Detailed Routing of Complex FPGAs Via Search-Based Boolean SAT. In: ACM/SIGDA International Symposium on FPGAs (1999)

    Google Scholar 

  14. Marques-Silva, J.P., Sakallah, K.A.: Conflict Analysis in Search Algorithms for Propositional Satisfiability. In: IEEE International Conference on Tools with Artificial Intelligence (1996)

    Google Scholar 

  15. Bayardo, R., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: National Conference on Artificial Intelligence, AAAI (1997)

    Google Scholar 

  16. Zhang, H.: SATO: An efficient propositional prover. In: International Conference on Automated Deduction (1997)

    Google Scholar 

  17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: 38th DAC (2001)

    Google Scholar 

  18. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust SAT Solver. In: DATE (2002)

    Google Scholar 

  19. Siege Satisfiability Solver (2004), http://www.cs.sfu.ca/~loryan/personal/

  20. SAT Competition (2003), http://www.satlive.org/SATCompetition/2003/ (2004)

  21. SAT Competition (2004), http://www.satlive.org/SATCompetition/2004/

  22. http://www.cs.washington.edu/homes/kautz/satplan/blackbox/ (2004)

  23. NuSMW Home Page (2004), http://nusmv.irst.itc.it/

  24. GrAnDe (2004), http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/

  25. SAT Competition (2002), http://www.satlive.org/SATCompetition/2002/ (2004)

  26. Plaisted, D.A., Greenbaum, S.: A stucture-preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfiability. In: IEEE International Conf. on Tools with Artificial Intelligence (1996)

    Google Scholar 

  28. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

    Google Scholar 

  29. Li, C.M.: Integrating Equivalency reasoning into Davis-Putnam procedure. In: AAAI 2000 (2000)

    Google Scholar 

  30. Freeman, J.W.: Improvements to propositional satisfiability search algorithms. PhD thesis, University of Pennsylvania (1995)

    Google Scholar 

  31. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfiability algorithms. In: 9th Portuguese Conf. on Artificial Intelligence (1999)

    Google Scholar 

  32. Zhang, L.: Searching for Truth: Techniques for Satisfiability of Boolean Formulas. PhD thesis. Princeton University, Princeton (2003)

    Google Scholar 

  33. Crawford, J., Auton, L.: Experimental results on the cross-over point in satisfiability problems. In: National Conf. on Artificial Intelligence, AAAI 1993 (1993)

    Google Scholar 

  34. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: Fourth International Symposium on Artificial Intelligence and Mathematics, Florida (1996)

    Google Scholar 

  35. Nadel, A.: The Jerusat SAT Solver. Master’s thesis. Hebrew University of Jerusalem (2002)

    Google Scholar 

  36. Pilarski, S., Hu, G.: Speeding up SAT for EDA. In: DATE (2002)

    Google Scholar 

  37. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies. In: The 18th National Conf. on Artificial Intelligence (2002)

    Google Scholar 

  38. http://www2.inf.ethz.ch/personal/biere/projects/limmat/ (2004)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahajan, Y.S., Fu, Z., Malik, S. (2005). Zchaff2004: An Efficient SAT Solver. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing. SAT 2004. Lecture Notes in Computer Science, vol 3542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527695_27

Download citation

  • DOI: https://doi.org/10.1007/11527695_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27829-0

  • Online ISBN: 978-3-540-31580-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics