Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Photometric Normalisation for Face Verification

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2301 Accesses

Abstract

Further to previous work showing the superiority of the pre-processing algorithm developed by Gross and Brajovic, we propose improvements that remove the need for parameter selection. In extensive experimentation on the XM2VTS database, the Yale B database and the BANCA database, we show that our method of automatic parameter selection can produce better results than setting the parameter to a single value for the whole database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acton, S.: Multigrid Anisotropic Diffusion. IEEE Trans. Image Processing 7 (1998)

    Google Scholar 

  2. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for illumination changes. IEEE Trans. Pattern Anal. Mach. Intelligence 19(7), 721–732 (1997)

    Article  Google Scholar 

  3. Bailly-Bailliere, E., et al.: The BANCA Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S., et al. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)

    Google Scholar 

  4. Basri, R., Jacobs, D.: Lambertian Reflectance and Linear Subspaces. IEEE Trans. Pattern Anal. Mach. Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  5. Belhumeur, P., Kriegman, D.: What is the Set of Images of an Object Under All Possible Lighting Conditions? In: IEEE Proc. Conf. Computer Vision and Pattern Recognition (1996)

    Google Scholar 

  6. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia

    Google Scholar 

  7. Georghiades, P., Belhumeur, D.: Kriegman, “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23, 643–660 (2001)

    Article  Google Scholar 

  8. Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  9. Gross, R., Brajovic, V.: An Image Preprocessing Algorithm. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 10–18. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Horn, B.: Robot Vision. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Kee, S., Lee, K., Lee, S.: Illumination Invariant Face Recognition Using Photometric Stereo. IEICE Trans. Inf & Syst Vol.E83-D No.7 (2000)

    Google Scholar 

  12. Kittler, J., Li, Y.P., Matas, J.: Face verification using client specific Fisher faces. In: The Statistics of Directions, Shapes and Images, pp. 63–66 (2000)

    Google Scholar 

  13. Land, E., McCann, J.: Lightness and Retinex Theory. Journal of the Optical Society of America 61, 1–11 (1971)

    Article  Google Scholar 

  14. Lee, K., Ho, J., Kriegman, D.: 9 Points of Light: Aquiring Subspaces for Face Recognition Under Variable Lighting. In: IEEE Proc. Conf. Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  15. Messer, K., Matas, J., Kittler, J.: XM2VTSDB: The extended M2VTS Database. In: AVBPA (1999)

    Google Scholar 

  16. Rahman, Z., Woodell, G., Jobson, D.: A Comparison of the Multiscale Retinex with other Image Enhancement Techniques. In: Proceedings of the IS&T 50th Anniversary Conference (1997)

    Google Scholar 

  17. Ramamoorthi, R.: Analytic PCA Construction for Theoretical Analysis of Lighting Variability, including Attached Shadows, in a Single Image of a Lambertian Object. IEEE Trans. Pattern Anal. Mach. Intelligence 24(10), 1322–1333 (2002)

    Article  Google Scholar 

  18. Short, J., Kittler, J., Messer, K.: A Comparison of Photometric Normalisation Algorithms for Face Verification. In: Proc. Automatic Face and Gesture Rocgnition, pp. 254–259 (2004)

    Google Scholar 

  19. Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Congitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  20. Vasilescu, M., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Short, J., Kittler, J., Messer, K. (2005). Photometric Normalisation for Face Verification. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_64

Download citation

  • DOI: https://doi.org/10.1007/11527923_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics