Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Dynamical Systems Approach to Learning: A Frequency-Adaptive Hopper Robot

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

We present an example of the dynamical systems approach to learning and adaptation. Our goal is to explore how both control and learning can be embedded into a single dynamical system, rather than having a separation between controller and learning algorithm. First, we present our adaptive frequency Hopf oscillator, and illustrate how it can learn the frequencies of complex rhythmic input signals. Then, we present a controller based on these adaptive oscillators applied to the control of a simulated 4-degrees-of-freedom spring-mass hopper. By the appropriate design of the couplings between the adaptive oscillators and the mechanical system, the controller adapts to the mechanical properties of the hopper, in particular its resonant frequency. As a result, hopping is initiated and locomotion similar to the bound emerges. Interestingly, efficient locomotion is achieved without explicit inter-limb coupling, i.e. the only effective inter-limb coupling is established via the mechanical system and the environment. Furthermore, the self-organization process leads to forward locomotion which is optimal with respect to the velocity/power ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Movies of the spring-mass hopper are, available at http://birg.epfl.ch

  2. Open Dynamics Engine Documentation, available at http://ode.org

  3. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. Journal of Comparative Physiology 173, 509–517 (1993)

    Google Scholar 

  4. Buchli, J., Ijspeert, A.J.: A simple, adaptive locmotion toy-system. In: Schaal, S., Ijspeert, A.J., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.A. (eds.) Proceedings SAB 2004. MIT Press, Cambridge (2004)

    Google Scholar 

  5. Buehler, M., Battaglia, R., Cocosco, R., Hawker, G., Sarkis, J., Yamazaki, K.: SCOUT: a simple quadruped that walks, climbs, and runs. In: Proceedings ICRA, vol. 2, pp. 1707–1712 (1998)

    Google Scholar 

  6. Cham, J.G., Karpick, J.K., Cutkosky, M.R.: Stride period adaptation of a biomimetic running hexapod. Int. J. of Robotics Research 23(2), 141–153 (2004)

    Article  Google Scholar 

  7. Collins, J.J., Richmond, S.A.: Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics 71(5), 375–385 (1994)

    Article  MATH  Google Scholar 

  8. de Lasa, M., Buehler, M.: Dynamic compliant quadruped walking. In: ICRA 2001, vol. 3, pp. 3153–3158 (2001)

    Google Scholar 

  9. Eguíluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J., Magnasco, M.O.: Essential nonlinearities in hearing. Phys. Rev. Lett. 84(22), 5232–5235 (2000)

    Article  Google Scholar 

  10. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. The International Journal of Robotics Research 3-4, 187–202 (2003)

    Article  Google Scholar 

  11. Full, R.J., Koditscheck, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biology 202, 3325–3332 (1999)

    Google Scholar 

  12. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2004)

    MathSciNet  Google Scholar 

  13. Iida, F., Pfeifer, R.: Cheap rapid locomotion of a quadruped robot: Self-stabilization of bounding gait. In: Groen, F., et al. (eds.) Intelligent Autonomous Systems, vol. 8, pp. 642–649. IOS Press, Amsterdam (2004)

    Google Scholar 

  14. Kimura, H., Fukuoka, Y., Cohen, A.V.: Biologically inspired adaptive dynamic walking of a quadruped robot. In: From Animals to Animats 8. Proceedings SAB 2004, pp. 201–210. MIT Press, Cambridge (2004)

    Google Scholar 

  15. Michel, O.: Webots: Professional mobile robot simulation. Int. J. Adv. Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

  16. Nishii, J.: A learning model for oscillatory networks. Neural Networks 11(2), 249–257 (1998)

    Article  MathSciNet  Google Scholar 

  17. Raibert, M., Hodgins, J.K.: Biol. Neural Networks in Invertebrate Neuroethology and Robotics. chapter Legged Robots, pp. 319–354. Academic Press, London (1993)

    Google Scholar 

  18. Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic Hebbian learning for adaptive frequency oscillators. Physica D (2005) (submitted)

    Google Scholar 

  19. Taga, G.: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybernetics 78, 9–17 (1998)

    Article  MATH  Google Scholar 

  20. Tsuchiya, K., Aoi, S., Tsujita, K.: Locomotion control of a multi-legged locomotion robot using oscillators. In: 2002 IEEE Intl. Conf. SMC, vol. 4 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchli, J., Righetti, L., Ijspeert, A.J. (2005). A Dynamical Systems Approach to Learning: A Frequency-Adaptive Hopper Robot. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_22

Download citation

  • DOI: https://doi.org/10.1007/11553090_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics