Abstract
Schema integration is the activity of providing a unified representation of multiple data sources. The core problems in schema integration are: schema matching, i.e. the identification of correspondences, or mappings, between schema objects, and schema merging, i.e. the creation of a unified schema based on the identified mappings. Existing schema matching approaches attempt to identify a single mapping between each pair of objects, for which they are 100% certain of its correctness. However, this is impossible in general, thus a human expert always has to validate or modify it. In this paper, we propose a new schema integration approach where the uncertainty in the identified mappings that is inherent in the schema matching process is explicitly represented, and that uncertainty propagates to the schema merging process, and finally it is depicted in the resulting integrated schema.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB Journal 10, 334–350 (2001)
Bernstein, P.: Applying model management to classical meta data problems. In: Proc. CIDR, pp. 209–220 (2003)
Batini, C., Lenzerini, M., Navathe, S.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18, 323–364 (1986)
Bernstein, P.A., Pottinger, R.A.: Merging models based on given correspondences. In: Proc. 29th VLDB Conference, Berlin (2003)
Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic model management. In: Proc. SIGMOD, pp. 193–204. ACM Press, New York (2003)
Hayne, S., Ram, S.: Multi-User View Integration System (MUVIS): An Expert System for View Integration. In: ICDE, pp. 402–409 (1990)
Spaccapietra, S., Parent, C.: View Integration: A Step Forward in Solving Structural Conflicts. IEEE TKDE 6(2), 258–274 (1994)
Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual model transformations. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 326–341. Springer, Heidelberg (2005)
Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proc. 27th VLDB Conference, pp. 49–58 (2001)
Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map ontologies on the Semantic Web. In: Proc. World-Wide Web Conference, pp. 662–673 (2002)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128 (2002)
van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration. In: ICDE (2005)
Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and evaluating automatic semantic reconciliation. VLDB Journal 14, 50–67 (2005)
Rizopoulos, N.: Automatic discovery of semantic relationships between schema elements. In: ICEIS, vol. (1), pp. 3–8 (2004)
McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation rules. In: Proc. ICDE, pp. 227–238. IEEE, Los Alamitos (2003)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Magnani, M., Rizopoulos, N., Mc.Brien, P., Montesi, D. (2005). Schema Integration Based on Uncertain Semantic Mappings. In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (eds) Conceptual Modeling – ER 2005. ER 2005. Lecture Notes in Computer Science, vol 3716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11568322_3
Download citation
DOI: https://doi.org/10.1007/11568322_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29389-7
Online ISBN: 978-3-540-32068-5
eBook Packages: Computer ScienceComputer Science (R0)