Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hypertree Decompositions: Structure, Algorithms, and Applications

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3787))

Included in the following conference series:

Abstract

We review the concepts of hypertree decomposition and hypertree width from a graph theoretical perspective and report on a number of recent results related to these concepts. We also show – as a new result – that computing hypertree decompositions is fixed-parameter intractable.

This paper was supported by the Austrian Science Fund (FWF) project: Nr. P17222-N04, Complementary Approaches to Constraint Satisfaction. Correspondence to: Georg Gottlob, Institut für Informationssysteme, TU Wien, Favoritenstr. 9-11/184-2, A-1040 Wien, Austria, E-mail: gottlob@acm.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, I.: Marshals, monotone marshals, and hypertree width. Journal of Graph Theory 47, 275–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adler, I., Gottlob, G., Grohe, M.: Hypertree-width and related hypergraph invariants. Manuscript, submitted for publication, available from the authors

    Google Scholar 

  3. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational databases. In: Proc. STOC 1977, pp. 77–90 (1977)

    Google Scholar 

  4. Cohen, D.A., Jeavons, P.G., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction and spread cut decomposition. In: Proc. IJCAI 2005, pp. 72–77 (2005)

    Google Scholar 

  5. Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, 2nd edn., pp. 276–285. Wiley & Sons, Chichester (1992)

    Google Scholar 

  6. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. Artificial Intelligence 34(1), 1–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38(3), 353–366 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  9. Freuder, E.C.: A sufficient condition for backtrack bounded search. Journal of the ACM 32(4), 755–761 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: Hard and easy games. Journal of Artificial Intelligence Research, JAIR (2005) (To appear); Preliminary version In: Proc. TARK 2003 (2003)

    Google Scholar 

  11. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. Journal of the ACM 48(3), 431–498 (2001); Preliminary version in: Proc. FOCS 1998 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gottlob, G., Leone, N., Scarcello, F.: Computing LOGCFL certificates. Theoretical Computer Science 270(1-2), 761–777 (2002); Preliminary version In: Proc. ICALP 1999 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Journal of Computer and System Sciences (JCSS) 64(3), 579–627 (2002); Preliminary version In: Proc. PODS 1999, (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottlob, G., Leone, N., Scarcello, F.: On tractable queries and constraints. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 1–15. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artificial Intelligence 124(2), 243–282 (2000); Preliminary version In: Proc. IJCAI 1999 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: Game-theoretic and logical characterizations of hypertree width. In: Proc. PODS 2001, pp. 195–206 (2001)

    Google Scholar 

  17. Gottlob, G., Pichler, R.: Hypergraphs in model checking: Acyclicity and hypertree-width versus clique-width. Siam Journal of Computing 33(2), 351–378 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gyssens, M., Paredaens, J.: A decomposition methodology for cyclic databases. In: Advances in Database Theory, vol. 2, pp. 85–122 (1984)

    Google Scholar 

  20. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences (JCSS) 61, 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korimort, T.: Constraint satisfaction problems – Heuristic decomposition. PhD thesis, Vienna University of Technology (April 2003)

    Google Scholar 

  22. Maier, D.: The theory of relational databases. Computer Science Press, Rockville (1986)

    Google Scholar 

  23. McMahan, B.: Bucket eliminiation and hypertree decompositions. Implementation report, Institute of Information Systems (DBAI), TU Vienna (2004)

    Google Scholar 

  24. Pearson, J., Jeavons, P.G.: A survey of tractable constraint satisfaction problems. Technical report CSD-TR-97-15, Royal Halloway University of London (1997)

    Google Scholar 

  25. Reed, B.: Tree width and tangles: A new connectivity measure and some applications. In: Surveys in Combinatorics. LNCS, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  26. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52, 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruzzo, W.L.: Tree-size bounded alternation. Journal of Computer and System Sciences (JCSS) 21(2), 218–235 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Samer, M.: Hypertree-decomposition via branch-decomposition. In: Proc. IJCAI 2005, pp. 1535–1536 (2005)

    Google Scholar 

  29. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. Journal of Combinatorial Theory, Series B 58, 22–33 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. VLDB 1981, pp. 82–94 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F. (2005). Hypertree Decompositions: Structure, Algorithms, and Applications. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_1

Download citation

  • DOI: https://doi.org/10.1007/11604686_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31000-6

  • Online ISBN: 978-3-540-31468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics