Abstract
This paper presents a new 64-bit block cipher mCrypton with three key size options (64 bits, 96 bits and 128 bits), specifically designed for use in resource-constrained tiny devices, such as low-cost RFID tags and sensors. It’s designed by following the overall architecture of Crypton but with redesign and simplification of each component function to enable much compact implementation in both hardware and software. A simple hardware implementation of mCrypton is also presented to demonstrate its suitability to our target applications. Our prototype implementation based on the straightforward 1 cycle/round architecture just requires about 3500 to 4100 gates for both encryption and decryption, and about 2400 to 3000 gates for encryption only (under 0.13μm CMOS technology). The result shows that the hardware complexity of mCrypton is quite well within an economic range of low-cost RFID tags and sensors. A more compact implementation under development promises that further size reduction around 30% could be achievable using the 5 cycles/round architecture.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A., Szydlo, M.: Security analysis of a cryptographically-enabled RFID device. In: 14th USENIX Security Symposium, Baltimore, Maryland (July-August 2005)
Campbell, R.H., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.: Towards Security and Privacy for Pervasive Computing. In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 1–15. Springer, Heidelberg (2003)
Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)
Garfinkel, S.L., Jeuls, A., Pappu, R.: RFID privacy: An overview of problems and proposed solutions. IEEE Security & Privacy, 34–43 (May/June 2005)
Karlof, C., Sastary, N., Wagner, D.: TinySec: A link layer security architecture for wireless sensor networks. In: ACM SenSys 2004, November 3-5 (2004)
Law, Y.W., Doumen, J.M., Hartel, P.H.: Benchmarking block ciphers for wireless sensor networks (Extended abstract). In: 1st IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS), Fort Lauderdale, Florida (October 2004)
Lim, C.H.: A revised version of CRYPTON: CRYPTON v1.0. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)
Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)
Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Commun. of ACM 47(5), 53–57 (2004)
Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proceedings of the 4th Int. Conf. on Information Processing in Sensor Networks: Special track on Platform Tools and Design Methods for Network Embedded Sensors (IPSN/SPOTS), April 25-27 (2005)
Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ubiquitous Computing. IEEE Security & Privacy, 22–26 (April 2002)
Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 454–469. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lim, C.H., Korkishko, T. (2006). mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, JS., Kwon, T., Yung, M. (eds) Information Security Applications. WISA 2005. Lecture Notes in Computer Science, vol 3786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604938_19
Download citation
DOI: https://doi.org/10.1007/11604938_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31012-9
Online ISBN: 978-3-540-33153-7
eBook Packages: Computer ScienceComputer Science (R0)