Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Programming and Fast Matrix Multiplication

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

We give a novel general approach for solving NP-hard optimization problems that combines dynamic programming and fast matrix multiplication. The technique is based on reducing much of the computation involved to matrix multiplication. We show that our approach works faster than the usual dynamic programming solution for any vertex subset problem on graphs of bounded branchwidth. In particular, we obtain the fastest algorithms for Planar Independent Set of runtime \(O(2^{2.52 \sqrt{n}})\), for Planar Dominating Set of runtime exact \(O(2^{3.99 \sqrt{n}})\) and parameterized \(O(2^{11.98 \sqrt{k}}) \cdot n^{O(1)}\), and for Planar Hamiltonian Cycle of runtime \(O(2^{5.58 \sqrt{n}})\). The exponent of the running time is depending heavily on the running time of the fastest matrix multiplication algorithm that is currently o(n 2.376).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. Journal of Computer and System Sciences 54, 255–262 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)

    Article  MathSciNet  Google Scholar 

  5. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Complexity 13, 42–49 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  8. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions (manuscript, 2006), http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2006/2006-006.pdf

  10. Dorn, F., Telle, J.A.: Two birds with one stone: the best of branchwidth and treewidth with one algorithm. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 386–397. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 168–177. ACM, New York (2003)

    Google Scholar 

  12. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n α log n) = o(n 2.376). SIAM Journal on Discrete Mathematics 19, 900–913 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7, 413–423 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kratsch, D., Spinrad, J.: Between O(nm) and O(n α). In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 158–167. ACM, New York (2003)

    Google Scholar 

  18. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences 51, 400–403 (1995)

    Article  MathSciNet  Google Scholar 

  19. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: 40th Annual Symposium on Foundations of Computer Science (FOCS 1999). LNCS, pp. 605–615. Springer, Heidelberg (1999)

    Google Scholar 

  21. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math 10, 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication. In: 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pp. 332–337 (1989)

    Google Scholar 

  23. Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n (3 − δ) time, with applications. In: ACM Symposium on Theory of Computing (STOC 2006) (to appear, 2006), http://www.cs.cmu.edu/~ryanw/max-weight-triangle.pdf

  24. Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM 49, 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorn, F. (2006). Dynamic Programming and Fast Matrix Multiplication. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_27

Download citation

  • DOI: https://doi.org/10.1007/11841036_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics