Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees

  • Conference paper
Web Information Systems – WISE 2006 (WISE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4255))

Included in the following conference series:

  • 700 Accesses

Abstract

Frequent embedded subtree pattern mining is an important data mining problem with broad applications. In this paper, we propose a novel embedded subtree mining algorithm, called PrefixTreeESpan (i.e. Prefix-Tree-projected Embedded-Subtree pattern), which finds a subtree pattern by growing a frequent prefix-tree. Thus, using divide and conquer, mining local length-1 frequent subtree patterns in Prefix-Tree-Projected database recursively will lead to the complete set of frequent patterns. Different fromChopper and XSpanner [4], PrefixTreeESpan does not need a checking process. Our performance study shows that PrefixTreeESpan outperforms Apriori-like algorithm: TreeMiner [6], and pattern-growth algorithms :Chopper , XSpanner .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient Substructure Discovery from Large Semi-structured Data. In: Proc. Second SIAM Int’l. Conf. Data Mining (April 2002)

    Google Scholar 

  2. Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent Subtree Mining -An Overiew. Fundamenta Informaticae (2005)

    Google Scholar 

  3. Chi, Y., Xia, Y., Yang, Y., Richard, R.M.: Mining Closed and Maximal Frequent Subtrees from Databases of Labeled Rooted Trees. IEEE Transactions on Knowledge and Data Engineering (2005)

    Google Scholar 

  4. Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.: Efficient Pattern-Growth Methods for Frequent Tree Pattern Mining. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 441–451. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: KDD 2003 (2003)

    Google Scholar 

  6. Zaki, M.J.: Efficiently Mining Frequent Trees in a Forest. In: Proceedings of the Int. Conf. on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, L., Lu, Y., Zhang, H., Hu, R. (2006). PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds) Web Information Systems – WISE 2006. WISE 2006. Lecture Notes in Computer Science, vol 4255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11912873_51

Download citation

  • DOI: https://doi.org/10.1007/11912873_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48105-8

  • Online ISBN: 978-3-540-48107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics