Abstract
Known compact e-cash schemes are constructed from signature schemes with efficient protocols and verifiable random functions. In this paper, we introduce a different approach. We construct compact e-cash schemes from bounded accumulators. A bounded accumulator is an accumulator with a limit on the number of accumulated values. We show a generic construction of compact e-cash schemes from bounded accumulators and signature schemes with certain properties and instantiate it using an existing pairing-based accumulator and a new signature scheme. Our scheme revokes the secret key of the double-spender directly and thus supports more efficient coin tracing. The new signature scheme has an interesting property that is has the message space of a cyclic group \(\mathbb{G}_1\) equipped with a bilinear pairing, with efficient protocol to show possession of a signature without revealing the signature nor the message. We show that the new scheme is secure in the generic group model. The new signature scheme may be of independent interest.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insubvertible encryption. In: ACM Conference on Computer and Communications Security, pp. 92–101 (2005)
Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS (2005)
Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)
Brickell, E., Gemmell, P., Kravitz, D.: Trustee-based Tracing Extensions to Anonymous Cash and the Making of Anonymous Change. In: SODA 1995. Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 457–466. Society for Industrial and Applied Mathematics (1995)
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)
Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)
Canard, S., Traoré, J.: On fair e-cash systems based on group signature schemes. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 237–248. Springer, Heidelberg (2003)
Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology: Proceedings of CRYPTO 1982, pp. 199–203. Plenum, New York (1983)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)
Goldreich, O.: Zero-Knowledge twenty years after its invention. Cryptology ePrint Archive, Report 2002/186 (2002), http://eprint.iacr.org/
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)
Maitland, G., Boyd, C.: Fair Electronic Cash Based on a Group Signature Scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 461–465. Springer, Heidelberg (2001)
Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Au, M.H., Wu, Q., Susilo, W., Mu, Y. (2006). Compact E-Cash from Bounded Accumulator. In: Abe, M. (eds) Topics in Cryptology – CT-RSA 2007. CT-RSA 2007. Lecture Notes in Computer Science, vol 4377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11967668_12
Download citation
DOI: https://doi.org/10.1007/11967668_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69327-7
Online ISBN: 978-3-540-69328-4
eBook Packages: Computer ScienceComputer Science (R0)