Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Compact E-Cash from Bounded Accumulator

  • Conference paper
Topics in Cryptology – CT-RSA 2007 (CT-RSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4377))

Included in the following conference series:

  • 1445 Accesses

Abstract

Known compact e-cash schemes are constructed from signature schemes with efficient protocols and verifiable random functions. In this paper, we introduce a different approach. We construct compact e-cash schemes from bounded accumulators. A bounded accumulator is an accumulator with a limit on the number of accumulated values. We show a generic construction of compact e-cash schemes from bounded accumulators and signature schemes with certain properties and instantiate it using an existing pairing-based accumulator and a new signature scheme. Our scheme revokes the secret key of the double-spender directly and thus supports more efficient coin tracing. The new signature scheme has an interesting property that is has the message space of a cyclic group \(\mathbb{G}_1\) equipped with a bilinear pairing, with efficient protocol to show possession of a signature without revealing the signature nor the message. We show that the new scheme is secure in the generic group model. The new signature scheme may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insubvertible encryption. In: ACM Conference on Computer and Communications Security, pp. 92–101 (2005)

    Google Scholar 

  2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS (2005)

    Google Scholar 

  3. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

    Google Scholar 

  4. Brickell, E., Gemmell, P., Kravitz, D.: Trustee-based Tracing Extensions to Anonymous Cash and the Making of Anonymous Change. In: SODA 1995. Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 457–466. Society for Industrial and Applied Mathematics (1995)

    Google Scholar 

  5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Canard, S., Traoré, J.: On fair e-cash systems based on group signature schemes. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 237–248. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology: Proceedings of CRYPTO 1982, pp. 199–203. Plenum, New York (1983)

    Google Scholar 

  9. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Goldreich, O.: Zero-Knowledge twenty years after its invention. Cryptology ePrint Archive, Report 2002/186 (2002), http://eprint.iacr.org/

  11. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Maitland, G., Boyd, C.: Fair Electronic Cash Based on a Group Signature Scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 461–465. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Au, M.H., Wu, Q., Susilo, W., Mu, Y. (2006). Compact E-Cash from Bounded Accumulator. In: Abe, M. (eds) Topics in Cryptology – CT-RSA 2007. CT-RSA 2007. Lecture Notes in Computer Science, vol 4377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11967668_12

Download citation

  • DOI: https://doi.org/10.1007/11967668_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69327-7

  • Online ISBN: 978-3-540-69328-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics