Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Signature Scheme with Efficient Protocols

  • Conference paper
  • First Online:
Security in Communication Networks (SCN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2576))

Included in the following conference series:

Abstract

Digital signature schemes are a fundamental cryptographic primitive, of use both in its own right, and as a building block in cryptographic protocol design. In this paper, we propose a practical and provably secure signature scheme and show protocols (1) for issuing a signature on a committed value (so the signer has no information about the signed value), and (2) for proving knowledge of a signature on a committed value. This signature scheme and corresponding protocols are a building block for the design of anonymity-enhancing cryptographic systems, such as electronic cash, group signatures, and anonymous credential systems. The security of our signature scheme and protocols relies on the Strong RSA assumption. These results are a generalization of the anonymous credential system of Camenisch and Lysyanskaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group signature scheme. In M. Bellare, editor, Advances in Cryptology-CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 255–270. Springer Verlag, 2000.

    Google Scholar 

  2. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In W. Fumy, editor, Advances in Cryptology-EUROCRYPT’ 97, volume 1233 of Lecture Notes in Computer Science, pages 480–494. Springer Verlag, 1997.

    Google Scholar 

  3. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor, Advances in Cryptology-CRYPTO’ 92, volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer-Verlag, 1992.

    Chapter  Google Scholar 

  4. F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor, Advances in Cryptology-EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 431–444. Springer Verlag, 2000.

    Chapter  MATH  Google Scholar 

  5. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates-Building in Privacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands, 1999.

    Google Scholar 

  6. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multishow credential system with optional anonymity revocation. In B. Pfitzmann, editor, Advances in Cryptology-EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 93–118. Springer Verlag, 2001.

    Google Scholar 

  8. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the product of two safe primes. In J. Stern, editor, Advances in Cryptology-EUROCRYPT’ 99, volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer Verlag, 1999.

    Chapter  MATH  Google Scholar 

  9. J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In M. Wiener, editor, Advances in Cryptology-CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Science, pages 413–430. Springer Verlag, 1999.

    Chapter  Google Scholar 

  10. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. Kaliski, editor, Advances in Cryptology-CRYPTO’ 97, volume 1296 of Lecture Notes in Computer Science, pages 410–424. Springer Verlag, 1997.

    Chapter  Google Scholar 

  11. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520, Hartung Gorre Verlag, Konstanz.

    Google Scholar 

  12. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages 209–218, 1998.

    Google Scholar 

  13. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct. 1985.

    Article  Google Scholar 

  14. D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol for transmitting personal information between organizations. In M. Odlyzko, editor, Advances in Cryptology-CRYPTO’ 86, volume 263 of Lecture Notes in Computer Science, pages 118–167. Springer-Verlag, 1987.

    Chapter  Google Scholar 

  15. L. Chen. Access with pseudonyms. In E. D. and J. Golić, editor, Cryptography: Policy and Algorithms, volume 1029 of Lecture Notes in Computer Science, pages 232–243. Springer Verlag, 1995.

    Chapter  Google Scholar 

  16. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In Proc. 6th ACM Conference on Computer and Communications Security, pages 46–52. ACM press, nov 1999.

    Google Scholar 

  17. I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In B. Preneel, editor, Advances in Cryptology-EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 431–444. Springer Verlag, 2000.

    Chapter  Google Scholar 

  18. I. Damgård and E. Fujisaki. An integer commitment scheme based on groups with hidden order. http://eprint.iacr.org/2001, 2001.

  19. I. B. Damgård. Payment systems and credential mechanism with provable security against abuse by individuals. In S. Goldwasser, editor, Advances in Cryptology-CRYPTO’ 88, volume 403 of Lecture Notes in Computer Science, pages 328–335. Springer Verlag, 1990.

    Chapter  Google Scholar 

  20. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on Information Theory, IT-22(6):644–654, Nov. 1976.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology-CRYPTO’ 86, volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer Verlag, 1987.

    Chapter  Google Scholar 

  22. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In B. Kaliski, editor, Advances in Cryptology-CRYPTO’ 97, volume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer Verlag, 1997.

    Chapter  Google Scholar 

  23. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In K. Nyberg, editor, Advances in Cryptology-EUROCRYPT’ 98, volume 1403 of Lecture Notes in Computer Science, pages 32–46. Springer Verlag, 1998.

    Chapter  Google Scholar 

  24. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In J. Stern, editor, Advances in Cryptology-EUROCRYPT’ 99, volume 1592 of Lecture Notes in Computer Science, pages 123–139. Springer Verlag, 1999.

    Chapter  Google Scholar 

  25. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. SIAM Journal of Computing, 18(1):186–208, Feb. 1989.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys and C. Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture Notes in Computer Science. Springer Verlag, 1999.

    Google Scholar 

  28. S. Micali. 6.875: Introduction to cryptography. MIT course taught in Fall 1997.

    Google Scholar 

  29. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300–317, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pages 33–43, Seattle, Washington, 15–17 May 1989. ACM.

    Google Scholar 

  31. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128–138, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb. 1978.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387–394, Baltimore, Maryland, 1990. ACM.

    Google Scholar 

  34. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology, 4(3):239–252, 1991.

    Article  MATH  Google Scholar 

  35. A. Shamir. On the generation of cryptographically strong pseudorandom sequences. In ACM Transaction on Computer Systems, volume 1, pages 38–44, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Camenisch, J., Lysyanskaya, A. (2003). A Signature Scheme with Efficient Protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds) Security in Communication Networks. SCN 2002. Lecture Notes in Computer Science, vol 2576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36413-7_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-36413-7_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00420-2

  • Online ISBN: 978-3-540-36413-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics