Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Term Proximity Scoring for Keyword-Based Retrieval Systems

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2633))

Included in the following conference series:

Abstract

This paper suggests the use of proximity measurement in combination with the Okapi probabilistic model. First, using the Okapi system, our investigation was carried out in a distributed retrieval framework to calculate the same relevance score as that achieved by a single centralized index. Second, by applying a term-proximity scoring heuristic to the top documents returned by a keyword-based system, our aim is to enhance retrieval performance. Our experiments were conducted using the TREC8, TREC9 and TREC10 test collections, and show that the suggested approach is stable and generally tends to improve retrieval effectiveness especially at the top documents retrieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allan, J., Ballesteros, L., Callan, J.P., Croft, W.B. and Lu, Z.: Recent experiments with INQUERY. In Proceedings of TREC-4, NIST Special Publication #500-236, 49–63, 1996.

    Google Scholar 

  2. Arampatzis, A., van der Weide, T., Koster, C. and van Bommel, P.: Linguistically motivated information retrieval. Encyclopedia of Library and Information Science, 39, 2000.

    Google Scholar 

  3. Buckley, C., Singhal, A., and Mitra, M.: Using query zoning and correlation within SMART: TREC-5. In Proceedings of TREC-5, NIST Special Publication #500-238, 105–118, 1997.

    Google Scholar 

  4. Carmel, D., Amitay, E., Herscovici, M., Maarek, Y., Petruschka, Y., and Soffer, A.: Juru at TREC-10: Experiments with index pruning. In Proceedings TREC-10, NIST Special Publication #500-250, 228–236, 2002.

    Google Scholar 

  5. Clarke, C.L.A., and Cormack, G.V. and Tudhope E. A.: Relevance Ranking for One to Three Term Queries. Information Processing and Management, 36(2):291–311, 2000.

    Article  Google Scholar 

  6. Craswell, N., Hawking, D., and Robertson, S.E.: Effective site finding using link anchor information. In Proceedings SIGIR-2001, ACM Press, 250–257, 2001.

    Google Scholar 

  7. Croft, W.B.: Combining approaches to information retrieval. In W.B. Croft (Ed.), Advances in information retrieval, Kluwer Academic Publishers, 1–36, 2000.

    Google Scholar 

  8. Dumais, S.T.: Latent semantic indexing (LSI) and TREC-2. In Proceedings of TREC-2, NIST Special Publication, #500-215, 105–115, 1994.

    Google Scholar 

  9. Evans, D.A., Milic-Frayling, N., and Lefferts, R.G.: CLARIT TREC-4 experiments. In Proceedings of TREC-4, NIST Special Publication, #500-236, 305–321, 1996.

    Google Scholar 

  10. Fagan, J.: Experiments in automatic phrase indexing for document retrieval: A comparison of syntactic and non-syntactic methods. PhD thesis, Computer Science Department, Cornell University. 1987.

    Google Scholar 

  11. Fagan, J.: The effectiveness of a nonsytactic approach to automatic phrase indexing for document retrieval. Journal of the American Society for Information Science, 40(2), 115–132, 1989.

    Article  Google Scholar 

  12. Hawkings, D. and Thistlewaite, P.: Proximity operators — So near and yet so far. In Proceedings of TREC-4, NIST Special Publication #500-236, 131–143, 1996.

    Google Scholar 

  13. Hawking, D., and Thistlewaite, P.: Methods for information server selection. ACM Transactions on Information Systems, 17(1), 40–76, 1999.

    Article  Google Scholar 

  14. Hawking, D. and Craswell, N.: Overview of the TREC-2001 Web track. In Proceedings TREC-10, NIST Special Publication #500-250, 61–67, 2002.

    Google Scholar 

  15. Hull, D.A., Grefenstette, G., Schulze, B.M., Gaussier, E., Schutze, H. and Pedersen, J.O.: Xerox TREC-5 site report: Routing, filtering, NLP, and Spanish tracks. In Proceedings of TREC-5, NIST Special Publication #500-238, 167–180, 1997.

    Google Scholar 

  16. Jansen, B.J., Spink, A. and Saracevic, T.: Real life, real users and real needs: A study and analysis of user queries on the Web. Information Processing and Management, 36(2), 207–227, 2000.

    Article  Google Scholar 

  17. Mitra, M., Buckley, C., Singhal, A., and Cardie, C.: An analysis of statistical and syntactic phrases. In Proceedings of RIAO-97, 1997.

    Google Scholar 

  18. Papka, R., and Allan, J.: Document classification using multiword features. In Proceedings of CIKM-98, ACM Press, 124–131. 1998.

    Google Scholar 

  19. Rasolofo, Y., Abbaci, F. and Savoy, J.: Approaches to collection selection and results merging for distributed information ietrieval. In Proceedings of CIKM-2001, ACM Press, 191–198, 2001.

    Google Scholar 

  20. Rasolofo, Y., Hawking, D., Savoy, J.: Result Merging Strategies for a Current News MetaSearcher. Information Processing & Management, 2003 (to appear).

    Google Scholar 

  21. Robertson, S.E., and Spark Jones, K.: Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3), 129–146, 1976.

    Article  Google Scholar 

  22. Robertson, S.E., Walker, S., and Beaulieu, M.: Experimentation as a way of life: Okapi at TREC. Information Processing & Management, 36(1), 95–108, 2000.

    Article  Google Scholar 

  23. Salton G., and McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, 1983.

    Google Scholar 

  24. Savoy, J., and Rasolofo, Y.: Report on the TREC-10 experiment: Distributed collections and entrypage searching. In Proceedings TREC-10, NIST Special Publication #500-250, 586–595, 2002.

    Google Scholar 

  25. Silverstein, C., Henzinger, M., Marais, H. and Moricz, M.: Analysis of a very large Web search engine query log. ACM SIGIR Forum, 33(1), 6–12, 1999.

    Article  Google Scholar 

  26. Singhal, A., and Kaszkiel, M.: A case study in Web search using TREC algorithms. In Proceedings of WWW’10, Elsevier, 708–716, 2001.

    Google Scholar 

  27. Spink, A. Wolfram, D., Jansen, B.J., and Saracevic, T.: Searching the Web: The public and their queries. Journal of the American Society for Information Science and Technology, 52(3), 226–234, 2001.

    Article  Google Scholar 

  28. Strzalkowski, T., Guthrie, L., Karlgren, J., Leistensnider, J., Lin, F., Perez-Carballo, J., Straszheim, T., Wang, J., and Wilding, J.: Natural language information retrieval: TREC-5 report. In Proceedings TREC-5, NIST Special Publication #500-238, 291–313, 1997.

    Google Scholar 

  29. Voorhees, E.M.: Overview of the TREC 2001 question answering track. In Proceedings TREC-10, NIST Special Publication #500-250, 42–51, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rasolofo, Y., Savoy, J. (2003). Term Proximity Scoring for Keyword-Based Retrieval Systems. In: Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2003. Lecture Notes in Computer Science, vol 2633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36618-0_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-36618-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01274-0

  • Online ISBN: 978-3-540-36618-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics