Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weak Bisimulation for Probabilistic Systems

  • Conference paper
  • First Online:
CONCUR 2000 — Concurrency Theory (CONCUR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1877))

Included in the following conference series:

  • 681 Accesses

Abstract

In this paper, we introduce weak bisimulation in the framework of Labeled Concurrent Markov Chains, that is, probabilistic transition systems which exhibit both probabilistic and nondeterministic behavior. By resolving the nondeterminism present, these models can be decomposed into a possibly infinite number of computation trees. We show that in order to compute weak bisimulation it is sufficient to restrict attention to only a finite number of these computations. Finally, we present an algorithm for deciding weak bisimulation which has polynomial-time complexity in the number of states of the transition system.

This research was supported in part by NSF CCR-9619910, NSF CISE-9703220, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, and ONR N00014-97-1-0505 (MURI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Baeten and J. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

    MATH  Google Scholar 

  2. C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation. In R. Alur and T. Henzinger, editors, Proceedings of the 8th International Conference on Computer Aided Verification, New Brunswick, NJ, USA, volume 1102 of Lecture Notes in Computer Science, pages 38–49. Springer-Verlag, July/August 1996.

    Google Scholar 

  3. C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In Proceedings of the 9th International Conference on Computer Aided Verification, Haifa, volume 1254 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

    Google Scholar 

  4. C. Baier and M. Kwiatkowska. Automatic verification of liveness properties of randomized systems. In Proceedings of the 14 th Annual ACM Symposium on Principles of Distributed Computing, Santa Barbara, California, August 1997.

    Google Scholar 

  5. C. Baier and M. Stoelinga. Norm functions for bisimulations with delays. In Proc. FOSSACS’00. Springer-Verlag, 2000.

    Google Scholar 

  6. M. Bernardo and R. Gorrieri. Extended markovian process algebra. In U. Montanari and V. Sassone, editors, Proceedings CONCUR 96, Pisa, Italy, volume 1119 of Lecture Notes in Computer Science, pages 315–330. Springer-Verlag, 1996.

    Google Scholar 

  7. A. Bianco and R. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Proceedings Foundations of Software Techonology ans Theoretical Computer Science, volume 1026 of Lecture Notes in Computer Science, pages 499–513. Springer-Verlag, 1995.

    Google Scholar 

  8. I. Christoff. Testing equivalences and fully abstract models for probabilistic processes. In Baeten and Klop editors. Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990 [1], pages 126–140.

    Google Scholar 

  9. L. Christoff and I. Christoff. Efficient algorithms for verification of equivalences of probabilistic processes. In K. Larsen and A. Skou, editors, Proceedings of the 3rd International Workshop on Computer Aided Verification, Aalborg, Denmark, volume 575 of Lecture Notes in Computer Science, pages 310–321. Springer-Verlag, 1991.

    Google Scholar 

  10. R. Cleaveland, S. Smolka, and A. Zwarico. Testing preorders for probabilistic processes. In W. Kuich, editor, Proceedings 19 th ICALP, Vienna, volume 623 of Lecture Notes in Computer Science, pages 708–719. Springer-Verlag, 1992.

    Google Scholar 

  11. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state probabilistic programs. In Proceedings 29 th Annual Symposium on Foundations of Computer Science, pages 338–345. IEEE, 1988.

    Google Scholar 

  12. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. In M. Paterson, editor, Proceedings 17 th ICALP, Warwick, volume 443 of Lecture Notes in Computer Science, pages 336–349. Springer-Verlag, July 1990.

    Google Scholar 

  13. R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative, and stratified models of probabilistic processes. In Proceedings 5 th Annual Symposium on Logic in Computer Science, Philadelphia, USA, pages 130–141. IEEE Computer Society Press, 1990.

    Google Scholar 

  14. H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD thesis, Department of Computer Systems, Uppsala University, 1991. DoCS 91/27.

    Google Scholar 

  15. J. Hillston. PEPA: Performance enhanced process algebra. Technical Report CSR-24-93, University of Edinburgh, UK, 1993.

    Google Scholar 

  16. B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and refinement for nondeterministic and probabilistic processes. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Proceedings of the Third International School and Symposium on Formal Techniques in Real Time and Fault Tolerant Systems (FTRTFT’94), Lübeck, Germany, September 1994, volume 863 of Lecture Notes in Computer Science, pages 418–430. Springer-Verlag, 1994.

    Google Scholar 

  17. B. Jonsson and K. Larsen. Specification and refinement of probabilistic processes. In Proceedings 6 th Annual Symposium on Logic in Computer Science, Amsterdam, pages 266–277. IEEE Computer Society Press, 1991.

    Google Scholar 

  18. C. Jou and S. Smolka. Equivalences, congruences and complete axiomatizations for probabilistic processes. In Baeten and Klop editors. Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990 [1]

    Google Scholar 

  19. P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and three problems of equivalence. Information and Computation, 86(1):43–68, May 1990.

    Google Scholar 

  20. H. Karloff. Linear Programming. Progress in Theoretical Computer Science. Birkhauser, 1991.

    Google Scholar 

  21. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94, 1991.

    Google Scholar 

  22. I. Lee, P. Brémond-Grégoire, and R. Gerber. A process algebraic approach to the specification and analysis of resource-bound real-time systems. Proceedings of the IEEE, pages 158–171, Jan 1994.

    Google Scholar 

  23. R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs, 1989.

    MATH  Google Scholar 

  24. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):973–989, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems. Technical report, University of Cyprus, 1999.

    Google Scholar 

  26. A. Philippou, O. Sokolsky, R. Cleaveland, I. Lee, and S. Smolka. Probabilistic resource failure in real-time process algebra. In D. Sangiorgi and R. de Simone, editors, Proceedings CONCUR 98, Nice, France, volume 1446 of Lecture Notes in Computer Science, pages 389–404. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  27. A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation, 103:1–29, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Segala. Modelling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1995.

    Google Scholar 

  29. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In B. Jonsson and J. Parrow, editors, Proceedings CONCUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in Computer Science, pages 481–496. Springer-Verlag, 1994.

    Chapter  Google Scholar 

  30. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proceedings 26 th Annual Symposium on Foundations of Computer Science, pages 327–338. IEEE, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Philippou, A., Lee, I., Sokolsky, O. (2000). Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (eds) CONCUR 2000 — Concurrency Theory. CONCUR 2000. Lecture Notes in Computer Science, vol 1877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44618-4_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44618-4_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67897-7

  • Online ISBN: 978-3-540-44618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics