Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pomsets for Local Trace Languages

— Recognizability, Logic & Petri Nets —

  • Conference paper
  • First Online:
CONCUR 2000 — Concurrency Theory (CONCUR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1877))

Included in the following conference series:

  • 619 Accesses

Abstract

Mazurkiewicz traces can be seen as equivalence classes of words or as pomsets. Their generalisation by local traces was formalized by Hoogers, Kleijn and Thiagarajan as equivalence classes of step firing sequences. First we introduce a pomset representation for local traces. Extending Büchi’s Theorem and a previous generalisation to Mazurkiewicz traces, we show then that a local trace language is recognized by a finite step transition system if and only if its class of pomsets is bounded and definable in the Monadic Second Order logic. Finally, using Zielonka’s Theorem, we show that each recognizable local trace language is described by a finite safe labelled Petri net.

The complete version [22] of this paper is accessible on the web.

Supported by the German Research Foundation (DFG/Graduiertenkolleg)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Arnold: An extension of the notion of traces and asynchronous automata. Theoretical Informatics and Applications 25 (1991) 355–393

    MATH  Google Scholar 

  2. F. Bracho, M. Droste, and D. Kuske: Representations of computations in concurrent automata by dependence orders. Theoretical Comp. Science 174 (1997) 67–96

    Article  MATH  MathSciNet  Google Scholar 

  3. J. R. Büchi: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66–92

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Clerbout, M. Latteux, and Y. Roos: Semi-Commutations In [7], chap. 12 (1995) 487–552

    Google Scholar 

  5. B. Courcelle: The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Information and Computation 85 (1990) 12–75

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Diekert: A partial trace semantics for Petri nets. Theoretical Comp. Science 134 (1994) 87–105

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Diekert and G. Rozenberg: The Book of Traces. (World Scientific, 1995)

    Google Scholar 

  8. V. Diekert and Y. Métivier: Partial Commutations and Traces. Handbook of Formal languages, vol. 3 (1997) 457–533

    Google Scholar 

  9. M. Droste: Concurrent automata and domains. International Journal of Foundations of Computer Science 3 (1992) 389–418

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Droste and P. Gastin: Asynchronous cellular automata for pomsets without autoconcurrency. CONCUR’96, LNCS 1119 (1996) 627–638

    Google Scholar 

  11. M. Droste and D. Kuske: Logical definability of recognizable and aperiodic languages in concurrency monoids. LNCS 1092 (1996) 233–251

    Google Scholar 

  12. M. Droste, P. Gastin, and D. Kuske: Asynchronous cellular automata for pomsets. Theoretical Comp. Science (2000)-To appear.

    Google Scholar 

  13. W. Ebinger and A. Muscholl: Logical definability on infinite traces. Theoretical Comp. Science 154 (1996) 67–84

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Ehrenfeucht and G. Rozenberg: Partial (Set) 2-structures. Part II: State spaces of concurrent systems, Acta Informatica 27 (1990) 343–368

    Article  MATH  MathSciNet  Google Scholar 

  15. J. L. Gischer: The equational theory of pomsets. Theoretical Comp. Science 61 (1988) 199–224

    Article  MATH  MathSciNet  Google Scholar 

  16. P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan: A Trace Semantics for Petri Nets. Information and Computation 117 (1995) 98–114

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-Fr. Husson and R. Morin: On Recognizable Stable Trace Languages. FOSSACS 2000, LNCS 1784 (2000) 177–191

    Google Scholar 

  18. J.-Fr. Husson and R. Morin: Relationships between Arnold’s CCI sets of P-traces and Droste’s stably concurrent automata. Technical report MATH-AL-1-00 (TU-Dresden, 2000)

    Google Scholar 

  19. H. C. M. Kleijn, R. Morin, and B. Rozoy: A General Categorical Connection between Local Event Structures and Local Traces. FCT’99, LNCS 1684 (1999) 338–349

    Google Scholar 

  20. D. Kuske: Asynchronous cellular and asynchronous automata for pomsets. CONCUR’98, LNCS 1466 (1998) 517–532

    Google Scholar 

  21. D. Kuske: Infinite series-parallel posets: logic and languages. ICALP (2000)-to appear

    Google Scholar 

  22. D. Kuske and R. Morin: Pomsets for local trace languages. Technical report, TU Dresden (2000)-available at http://www.math.tu-dresden.de/~morin/papers/km00a.ps

    Google Scholar 

  23. K. Lodaya and P. Weil: Series-parallel languages and the bounded-width property. Theoretical Comp. Science 237 (2000) 347–380

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Mazurkiewicz: Concurrent program schemes and their interpretations. Aarhus University Publication (DAIMI PB-78, 1977)

    Google Scholar 

  25. R. Morin and B. Rozoy: On the Semantics of Place/Transition Nets. CONCUR’99, LNCS 1664 (1999) 447–462

    Google Scholar 

  26. M. Mukund: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3 (1992) 443–478

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Nielsen, G. Plotkin, and G. Winskel: Petri nets, events structures and domains, part 1. Relationships between Models of Concurrency, Theoretical Comp. Science 13 (1981) 85–108

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Nielsen, G. Rozenberg, and P. S. Thiagarajan: Behavioural Notions for Elementary Net Systems. Distributed Computing 4 (1990) 45–57

    Article  MathSciNet  Google Scholar 

  29. M. Nielsen, V. Sassone, and G. Winskel: Relationships between Models of Concurrency. Lect Notes Comput Sci 803 (1994) 425–475

    Google Scholar 

  30. V. Pratt: Modelling concurrency with partial orders. Int. J. of Parallel Programming 15 (1986) 33–71

    Article  MATH  MathSciNet  Google Scholar 

  31. M. O. Rabin: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1–35

    Article  MATH  MathSciNet  Google Scholar 

  32. F. P. Ramsey: On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264–286

    Article  Google Scholar 

  33. P. H. Starke: Processes in Petri nets. Elektronische Informationsverarbeitung und Kybernetik 17 (1981) 389–416

    MATH  MathSciNet  Google Scholar 

  34. W. Thomas: On logical definability of trace languages. Technical University of Munich, report TUM-I9002 (1990) 172–182

    Google Scholar 

  35. J. W. Thatcher and J. B. Wright: Generalized finite automata with an application to a decision problem of second-order logic. Math. Systems Theory 2 (1968) 57–82

    Article  MathSciNet  Google Scholar 

  36. G. Winskel: Event structures. Petri nets: Applications and Relationships to Other Models of Concurrency, LNCS 255 (1987) 325–392

    Google Scholar 

  37. W. Zielonka: Notes on finite asynchronous automata. Theoretical Informatics and Applications 21 (1987) 99–135

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D., Morin, R. (2000). Pomsets for Local Trace Languages. In: Palamidessi, C. (eds) CONCUR 2000 — Concurrency Theory. CONCUR 2000. Lecture Notes in Computer Science, vol 1877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44618-4_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-44618-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67897-7

  • Online ISBN: 978-3-540-44618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics