Abstract
Mazurkiewicz traces can be seen as equivalence classes of words or as pomsets. Their generalisation by local traces was formalized by Hoogers, Kleijn and Thiagarajan as equivalence classes of step firing sequences. First we introduce a pomset representation for local traces. Extending Büchi’s Theorem and a previous generalisation to Mazurkiewicz traces, we show then that a local trace language is recognized by a finite step transition system if and only if its class of pomsets is bounded and definable in the Monadic Second Order logic. Finally, using Zielonka’s Theorem, we show that each recognizable local trace language is described by a finite safe labelled Petri net.
The complete version [22] of this paper is accessible on the web.
Supported by the German Research Foundation (DFG/Graduiertenkolleg)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Arnold: An extension of the notion of traces and asynchronous automata. Theoretical Informatics and Applications 25 (1991) 355–393
F. Bracho, M. Droste, and D. Kuske: Representations of computations in concurrent automata by dependence orders. Theoretical Comp. Science 174 (1997) 67–96
J. R. Büchi: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66–92
M. Clerbout, M. Latteux, and Y. Roos: Semi-Commutations In [7], chap. 12 (1995) 487–552
B. Courcelle: The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Information and Computation 85 (1990) 12–75
V. Diekert: A partial trace semantics for Petri nets. Theoretical Comp. Science 134 (1994) 87–105
V. Diekert and G. Rozenberg: The Book of Traces. (World Scientific, 1995)
V. Diekert and Y. Métivier: Partial Commutations and Traces. Handbook of Formal languages, vol. 3 (1997) 457–533
M. Droste: Concurrent automata and domains. International Journal of Foundations of Computer Science 3 (1992) 389–418
M. Droste and P. Gastin: Asynchronous cellular automata for pomsets without autoconcurrency. CONCUR’96, LNCS 1119 (1996) 627–638
M. Droste and D. Kuske: Logical definability of recognizable and aperiodic languages in concurrency monoids. LNCS 1092 (1996) 233–251
M. Droste, P. Gastin, and D. Kuske: Asynchronous cellular automata for pomsets. Theoretical Comp. Science (2000)-To appear.
W. Ebinger and A. Muscholl: Logical definability on infinite traces. Theoretical Comp. Science 154 (1996) 67–84
A. Ehrenfeucht and G. Rozenberg: Partial (Set) 2-structures. Part II: State spaces of concurrent systems, Acta Informatica 27 (1990) 343–368
J. L. Gischer: The equational theory of pomsets. Theoretical Comp. Science 61 (1988) 199–224
P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan: A Trace Semantics for Petri Nets. Information and Computation 117 (1995) 98–114
J.-Fr. Husson and R. Morin: On Recognizable Stable Trace Languages. FOSSACS 2000, LNCS 1784 (2000) 177–191
J.-Fr. Husson and R. Morin: Relationships between Arnold’s CCI sets of P-traces and Droste’s stably concurrent automata. Technical report MATH-AL-1-00 (TU-Dresden, 2000)
H. C. M. Kleijn, R. Morin, and B. Rozoy: A General Categorical Connection between Local Event Structures and Local Traces. FCT’99, LNCS 1684 (1999) 338–349
D. Kuske: Asynchronous cellular and asynchronous automata for pomsets. CONCUR’98, LNCS 1466 (1998) 517–532
D. Kuske: Infinite series-parallel posets: logic and languages. ICALP (2000)-to appear
D. Kuske and R. Morin: Pomsets for local trace languages. Technical report, TU Dresden (2000)-available at http://www.math.tu-dresden.de/~morin/papers/km00a.ps
K. Lodaya and P. Weil: Series-parallel languages and the bounded-width property. Theoretical Comp. Science 237 (2000) 347–380
A. Mazurkiewicz: Concurrent program schemes and their interpretations. Aarhus University Publication (DAIMI PB-78, 1977)
R. Morin and B. Rozoy: On the Semantics of Place/Transition Nets. CONCUR’99, LNCS 1664 (1999) 447–462
M. Mukund: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3 (1992) 443–478
M. Nielsen, G. Plotkin, and G. Winskel: Petri nets, events structures and domains, part 1. Relationships between Models of Concurrency, Theoretical Comp. Science 13 (1981) 85–108
M. Nielsen, G. Rozenberg, and P. S. Thiagarajan: Behavioural Notions for Elementary Net Systems. Distributed Computing 4 (1990) 45–57
M. Nielsen, V. Sassone, and G. Winskel: Relationships between Models of Concurrency. Lect Notes Comput Sci 803 (1994) 425–475
V. Pratt: Modelling concurrency with partial orders. Int. J. of Parallel Programming 15 (1986) 33–71
M. O. Rabin: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1–35
F. P. Ramsey: On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264–286
P. H. Starke: Processes in Petri nets. Elektronische Informationsverarbeitung und Kybernetik 17 (1981) 389–416
W. Thomas: On logical definability of trace languages. Technical University of Munich, report TUM-I9002 (1990) 172–182
J. W. Thatcher and J. B. Wright: Generalized finite automata with an application to a decision problem of second-order logic. Math. Systems Theory 2 (1968) 57–82
G. Winskel: Event structures. Petri nets: Applications and Relationships to Other Models of Concurrency, LNCS 255 (1987) 325–392
W. Zielonka: Notes on finite asynchronous automata. Theoretical Informatics and Applications 21 (1987) 99–135
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuske, D., Morin, R. (2000). Pomsets for Local Trace Languages. In: Palamidessi, C. (eds) CONCUR 2000 — Concurrency Theory. CONCUR 2000. Lecture Notes in Computer Science, vol 1877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44618-4_31
Download citation
DOI: https://doi.org/10.1007/3-540-44618-4_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67897-7
Online ISBN: 978-3-540-44618-7
eBook Packages: Springer Book Archive