Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Piecewise and Local Threshold Testability of DFA

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

Abstract

The necessary and sufficient conditions for an automaton to be locally threshold testable are found. We introduce the polynomial time algorithm to verify local threshold testability of the automaton of time complexity O(n 5) and an algorithm of order O(n 3) for the local threshold testability problem for syntactic semigroup of the automaton. We modify necessary and sufficient conditions for piecewise testability problem for deterministic finite automaton and improve the Stern algorithm to verify piecewise testability for the automaton. The time complexity of the algorithm is reduced from O(n 5) to O(n 2). An algorithm to verify piecewise testability for syntactic semigroup of the automaton of order O(n 2) is presented as well.

The algorithms have been implemented as a C/C ++ package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.-P. Beal, J. Senellart, On the bound of the synchronization delay of local automata, Theoret. Comput. Sci. 205,1–2(1998), 297–306.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Beauquier, J.E. Pin, Factors of words, Lect. Notes in Comp. Sci. Springer, Berlin, 372(1989), 63–79.

    Google Scholar 

  3. D. Beauquier, J.E. Pin, Languages and scanners, Theoret. Comp. Sci. 1,84(1991), 3–21.

    Article  Google Scholar 

  4. J.-C. Birget, Strict local testability of the finite control of two-way automata and of regular picture description languages, J. of Alg. Comp. 1,2(1991), 161–175.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.A. Brzozowski, I. Simon, Characterizations of locally testable events, Discrete Math. 4, (1973), 243–271.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Caron, LANGAGE: A Maple package for automaton characterization of regular languages, Springer, Lect. Notes in Comp. Sci. 1436(1998), 46–55.

    Google Scholar 

  7. P. Caron, Families of locally testable languages, Theoret. Comput. Sci., 242(2000), 361–376.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Head, Formal languages theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biol. 49(1987), 4, 739–757.

    MathSciNet  Google Scholar 

  9. F. Hinz, Classes of picture languages that cannot be distinguished in the chain code concept and deletion of redundant retreats, Springer, Lect. Notes in Comp. Sci. 349(1990), 132–143.

    Google Scholar 

  10. S. Kim, R. McNaughton, R. McCloskey, A polynomial time algorithm for the local testability problem of deterministic finite automata, IEEE Trans. Comput. 40(1991) N10, 1087–1093.

    Article  MathSciNet  Google Scholar 

  11. R. McNaughton, S, Papert, Counter-free automata M.I.T. Press. Mass., 1971.

    Google Scholar 

  12. J. Pin, Finite semigroups and recognizable languages. An introduction, Semigroups and formal languages, Math. and Ph. Sci. 1466(1995), 1–32.

    MathSciNet  Google Scholar 

  13. J. Ruiz, S. Espana, P. Garcia, Locally threshold testable languages in strict sense: Application to the inference problem. Springer, Lect. Notes in Comp. Sci 1433(1998), 150–161.

    Google Scholar 

  14. J. Stern, Complexity of some problems from the theory of automata. Inf. and Control, 66(1985), 163–176.

    Article  MATH  Google Scholar 

  15. I. Simon, Piecewise testable events, Springer, Lect. Notes in Comp. Sci., 33(1975), 214–222.

    Google Scholar 

  16. R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1(1972), 146–160. J. of Comp. System Sci. 25(1982), 360–376.

    Article  MATH  MathSciNet  Google Scholar 

  17. A.N. Trahtman, A polynomial time algorithm for local testability and its level. Int. J. of Algebra and Comp. v. 9,1(1998), 31–39.

    Article  MathSciNet  Google Scholar 

  18. A.N. Trahtman, A precise estimation of the order of local testability of a deterministic finite automaton, Springer, Lect. Notes in Comp. Sci. 1436(1998), 198–212.

    Google Scholar 

  19. E. Vidal, F. Casacuberta, P. Garcia, Grammatical inference and automatic speech recognition. In speech recognition and coding Springer, 1995, 175–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trahtman, A.N. (2001). Piecewise and Local Threshold Testability of DFA. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics