Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hypertree Decompositions: A Survey

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

  • 1167 Accesses

Abstract

This paper surveys recent results related to the concept of hypertree decomposition and the associated notion of hypertree width. A hypertree decomposition of a hypergraph (similar to a tree decomposition of a graph) is a suitable clustering of its hyperedges yielding a tree or a forest. Important NP hard problems become tractable if restricted to instances whose associated hypergraphs are of bounded hypertree width. We also review a number of complexity results on problems whose structure is described by acyclic or nearly acyclic hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Bachmair, Ta Chen, C. R. Ramakrishnan, and I. V. Ramakrishnan. Subsumption Algorithms Based on Search Trees. Proc. CAAP’96, Springer LNCS Vol. 1059.

    Google Scholar 

  2. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desiderability of Acyclic Database Schemes. Journal of ACM, 30(3):479–513, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. A. Bernstein, and N. Goodman. The power of natural semijoins. SIAM J. Computing, 10(4):751–771, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Computing, 25(6):1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries in relational Databases. Proc. STOC’77, pp. 77–90, 1977.

    Google Scholar 

  6. Ch. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. Theoretical Computer Science, 239(2):211–229, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Courcelle. Graph Rewriting: an algebraic and logic approach. Chapter 5 in Handbook of Theor. Comp. Sci., vol. B, J. Van Leeuwen ed., 1990.

    Google Scholar 

  8. B. Courcelle: Monadic second-order logic of graphs VII: Graphs as relational structures, in Theoretical Computer Science, Vol 101, pp. 3–33 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Dechter. Constraint Networks. In Encyclopedia of Artificial Intelligence, second edition, Wiley and Sons, pp. 276–285, 1992.

    Google Scholar 

  10. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, pp. 353–366, 1989.

    Google Scholar 

  11. R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. of the ACM, 30(3):514–550, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput., 28(1):57–104, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Flum, M. Frick, and M. Grohe. Query Evaluation via Tree-Decomposition. In Proc. ofICDT’01, Springer LNCS, Vol. 1973, pp. 22–38, 2001.

    Google Scholar 

  14. E. C. Freuder. Complexity of K-Tree Structured Constraint Satisfaction Problems. Proc. of AAAI’90, 1990.

    Google Scholar 

  15. H. Gaifman. On local and nonlocal properties. In Logic Colloquium’ 81, pp. 105–135, J. Stern ed., North Holland, 1982.

    Google Scholar 

  16. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Comp., NY, USA, 1979.

    MATH  Google Scholar 

  17. G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Journal of the ACM, 48(3), 2001. Preliminary version in FOCS’98.

    Google Scholar 

  18. G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL Certificates. Theoretical Computer Sciences, to appear. Preliminary version in ICALP’99.

    Google Scholar 

  19. G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries. JCSS. to appear. Preliminary version in PODS’99.

    Google Scholar 

  20. G. Gottlob, N. Leone, and F. Scarcello. “On Tractable Queries and Constraints,” in Proc. DEXA’ 99, Florence, 1999, LNCS 1677, pp. 1–15, Springer.

    Google Scholar 

  21. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods. Artificial Intelligence, 124(2):243–282, 2000. Preliminary version in IJCAI’99.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Gottlob, N. Leone, and F. Scarcello. “Advanced Parallel Algorithms for Processing Acyclic Conjunctive Queries, Rules, and Constraints,” Proc. SEKE00, pp. 167–176, KSI Ed., Chicago, USA, July 6–8, 2000.

    Google Scholar 

  23. G. Gottlob, N. Leone, and F. Scarcello. “Robbers, Marshals, and Guards: Game-Theoretic and Logical Characterizations of Hypertree Width,“ in Proc. PODS’01.

    Google Scholar 

  24. G. Gottlob and R. Pichler. Hypergraphs in Model Checking: Acyclicity and Hypertree-Width Versus Clique-Width. Proc. ICALP 2001, to appear.

    Google Scholar 

  25. M. Grohe, T. Schwentick, and L. Segoufin. When is the Evaluation of Conjunctive Queries Tractable? Proc. ACM STOC 2001.

    Google Scholar 

  26. M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57–89, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Gyssens, and J. Paredaens. A Decomposition Methodology for Cyclic Databases. In Advances in Database Theory, vol. 2, 1984.

    Google Scholar 

  28. P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM, 44(4):527–548.

    Google Scholar 

  29. D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chapter 2, pp. 67–161. Elsevier Science Publishers B. V. (North-Holland), 1990.

    Google Scholar 

  30. Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Journal of Computer and System Sciences, 61:302–332, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Lustig and O. Shmueli. Acyclic Hypergraph Projections. J. of Algorithms, 30:400–422, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Maier. The Theory of Relational Databases, Rochville, Md, Computer Science Press, 1986.

    Google Scholar 

  33. J. Pearson and P. Jeavons. A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Halloway University of London, 1997.

    Google Scholar 

  34. N. Robertson and P. D. Seymour. Graph Minors II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. J. Schaefer. The Complexity of Satisfiability Problems. In Proc. STOC’78.

    Google Scholar 

  36. P. D. Seymour and R. Thomas. Graph Searching and a Min-Max Theorem for Tree-Width. J. of Combinatorial Theory, Series B, 58:22–33, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. E. Tarjan, and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computing, 13(3):566–579, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Vardi. Complexity of Relational Query Languages. In Proc. of 14th ACM STOC, pp. 137–146, 1982.

    Google Scholar 

  39. E. Wanke. Bounded Tree-Width and LOGCFL. Journal of Algorithms, 16:470–491, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel evaluation of multi-join queries. In Proc. of SIGMOD’95, San Jose, CA USA, pp. 115–126, 1995.

    Google Scholar 

  41. M. Yannakakis. Algorithms for Acyclic Database Schemes. Proc. VLDB’81, pp. 82–94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Leone, N., Scarcello, F. (2001). Hypertree Decompositions: A Survey. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics