Abstract
This paper surveys recent results related to the concept of hypertree decomposition and the associated notion of hypertree width. A hypertree decomposition of a hypergraph (similar to a tree decomposition of a graph) is a suitable clustering of its hyperedges yielding a tree or a forest. Important NP hard problems become tractable if restricted to instances whose associated hypergraphs are of bounded hypertree width. We also review a number of complexity results on problems whose structure is described by acyclic or nearly acyclic hypergraphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Bachmair, Ta Chen, C. R. Ramakrishnan, and I. V. Ramakrishnan. Subsumption Algorithms Based on Search Trees. Proc. CAAP’96, Springer LNCS Vol. 1059.
C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desiderability of Acyclic Database Schemes. Journal of ACM, 30(3):479–513, 1983.
P. A. Bernstein, and N. Goodman. The power of natural semijoins. SIAM J. Computing, 10(4):751–771, 1981.
H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Computing, 25(6):1305–1317, 1996.
A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries in relational Databases. Proc. STOC’77, pp. 77–90, 1977.
Ch. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. Theoretical Computer Science, 239(2):211–229, 2000.
B. Courcelle. Graph Rewriting: an algebraic and logic approach. Chapter 5 in Handbook of Theor. Comp. Sci., vol. B, J. Van Leeuwen ed., 1990.
B. Courcelle: Monadic second-order logic of graphs VII: Graphs as relational structures, in Theoretical Computer Science, Vol 101, pp. 3–33 (1992).
R. Dechter. Constraint Networks. In Encyclopedia of Artificial Intelligence, second edition, Wiley and Sons, pp. 276–285, 1992.
R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, pp. 353–366, 1989.
R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. of the ACM, 30(3):514–550, 1983.
T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput., 28(1):57–104, 1998.
J. Flum, M. Frick, and M. Grohe. Query Evaluation via Tree-Decomposition. In Proc. ofICDT’01, Springer LNCS, Vol. 1973, pp. 22–38, 2001.
E. C. Freuder. Complexity of K-Tree Structured Constraint Satisfaction Problems. Proc. of AAAI’90, 1990.
H. Gaifman. On local and nonlocal properties. In Logic Colloquium’ 81, pp. 105–135, J. Stern ed., North Holland, 1982.
M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Comp., NY, USA, 1979.
G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Journal of the ACM, 48(3), 2001. Preliminary version in FOCS’98.
G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL Certificates. Theoretical Computer Sciences, to appear. Preliminary version in ICALP’99.
G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries. JCSS. to appear. Preliminary version in PODS’99.
G. Gottlob, N. Leone, and F. Scarcello. “On Tractable Queries and Constraints,” in Proc. DEXA’ 99, Florence, 1999, LNCS 1677, pp. 1–15, Springer.
G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods. Artificial Intelligence, 124(2):243–282, 2000. Preliminary version in IJCAI’99.
G. Gottlob, N. Leone, and F. Scarcello. “Advanced Parallel Algorithms for Processing Acyclic Conjunctive Queries, Rules, and Constraints,” Proc. SEKE00, pp. 167–176, KSI Ed., Chicago, USA, July 6–8, 2000.
G. Gottlob, N. Leone, and F. Scarcello. “Robbers, Marshals, and Guards: Game-Theoretic and Logical Characterizations of Hypertree Width,“ in Proc. PODS’01.
G. Gottlob and R. Pichler. Hypergraphs in Model Checking: Acyclicity and Hypertree-Width Versus Clique-Width. Proc. ICALP 2001, to appear.
M. Grohe, T. Schwentick, and L. Segoufin. When is the Evaluation of Conjunctive Queries Tractable? Proc. ACM STOC 2001.
M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57–89, 1994.
M. Gyssens, and J. Paredaens. A Decomposition Methodology for Cyclic Databases. In Advances in Database Theory, vol. 2, 1984.
P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM, 44(4):527–548.
D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chapter 2, pp. 67–161. Elsevier Science Publishers B. V. (North-Holland), 1990.
Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Journal of Computer and System Sciences, 61:302–332, 2000.
A. Lustig and O. Shmueli. Acyclic Hypergraph Projections. J. of Algorithms, 30:400–422, 1999.
D. Maier. The Theory of Relational Databases, Rochville, Md, Computer Science Press, 1986.
J. Pearson and P. Jeavons. A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Halloway University of London, 1997.
N. Robertson and P. D. Seymour. Graph Minors II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7:309–322, 1986.
T. J. Schaefer. The Complexity of Satisfiability Problems. In Proc. STOC’78.
P. D. Seymour and R. Thomas. Graph Searching and a Min-Max Theorem for Tree-Width. J. of Combinatorial Theory, Series B, 58:22–33, 1993.
R. E. Tarjan, and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computing, 13(3):566–579, 1984.
M. Vardi. Complexity of Relational Query Languages. In Proc. of 14th ACM STOC, pp. 137–146, 1982.
E. Wanke. Bounded Tree-Width and LOGCFL. Journal of Algorithms, 16:470–491, 1994.
A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel evaluation of multi-join queries. In Proc. of SIGMOD’95, San Jose, CA USA, pp. 115–126, 1995.
M. Yannakakis. Algorithms for Acyclic Database Schemes. Proc. VLDB’81, pp. 82–94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gottlob, G., Leone, N., Scarcello, F. (2001). Hypertree Decompositions: A Survey. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_5
Download citation
DOI: https://doi.org/10.1007/3-540-44683-4_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42496-3
Online ISBN: 978-3-540-44683-5
eBook Packages: Springer Book Archive