Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neutrality and the Evolvability of Boolean Function Landscape

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2038))

Included in the following conference series:

Abstract

This work is a study of neutrality in the context of Evolutionary Computation systems. In particular, we introduce the use of explicit neutrality with an integer string coding scheme to allow neutrality to be measured during evolution. We tested this method on a Boolean benchmark problem. The experimental results indicate that there is a positive relationship between neutrality and evolvability: neutrality improves evolvability. We also identify four characteristics of adaptive/neutral mutations that are associated with high evolvability. They may be the ingredients in designing effective Evolutionary Computation systems for the Boolean class problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, K.E. Kinner Jr., ed. MIT Press, (1994) 47–74.

    Google Scholar 

  2. Banzhaf, W.: Genotype-phenotype-mapping and neutral variation: a case study in genetic programming. In: Proceedings of the Conference on Parallel Problem Solving from Nature III. Springer-Verlag, Berlin Heidelberg New York (1994) 322–332.

    Google Scholar 

  3. Barnett, L.: Ruggedness and neutrality-the NKp family of fitness landscapes. In: Proceedings of the 6th International Conference on Artificial Life. MIT Press, (1998) 18–27.

    Google Scholar 

  4. Harvey, I., Thompson, A.: Through the labyrinth evolution finds a way: a silicon ridge. In: Proceedings of First International Conference on Evolvable Systems: From Biology to Hardware, LNCS, Vol. 1259. Springer-Verlag (1996) 406–422.

    Google Scholar 

  5. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems, Vol. 1, (1987) 495–502.

    MATH  Google Scholar 

  6. Huynen, M.A., Stadler, P.F., Fontana, W.: Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. (USA) Vol. 93 (1996) 397–401.

    Article  Google Scholar 

  7. Kimura, M.: Evolutionary Rate at the Molecular Level. Nature, Vol. 217 (1968) 624–626.

    Article  Google Scholar 

  8. Kimura, M.: The neutral theory as a basis for understanding the mechanism of evolution and variation at the molecular level. In: Molecular Evolution, Protein Polymorphism and the Neutral Theory. Springer-Verlag, Berlin (1982) 3–56.

    Google Scholar 

  9. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, 1983.

    Google Scholar 

  10. Kimura, M.: Some recent data supporting the neutral theory. In: New Aspects of the Genetics of Molecular Evolution. Springer-Verlag, Berlin (1991) 3–14.

    Google Scholar 

  11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992).

    Google Scholar 

  12. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming Approach. In: Proceedings of the First Genetic and Evolutionary Computation Conference (GECCO’99), Morgan Kaufmann, San Francisco, CA (1999) 1135–1142.

    Google Scholar 

  13. Miller, J.F., Thomson, P., Fogarty, T.C.: Designing electronic circuits using evolutionary algorithms, arithmetic circuits: a case study. In: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, Wiley, Chichester, UK (1998) 105–131.

    Google Scholar 

  14. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the Third European Conference on Genetic Programming (EuroGP2000). Lecture Notes in Computer Science, Vol. 1802, Springer-Verlag, Berlin (2000) 121–132.

    Google Scholar 

  15. Newman, M.E.J., and Engelhardt, R., Effects of neutral selection on the evolution of molecular species”, Proc. Roy. Soc. London Series B Vol. 265 (1998) 1333–1338.

    Article  Google Scholar 

  16. O’Neill, M., Ryan, C.: Under the hood of grammatical evolution. In: Proceedings of the First Genetic and Evolutionary Computation Conference (GECCO’99), Morgan Kaufmann, San Francisco, CA (1999) 1143–1148.

    Google Scholar 

  17. O’Neill, M., Ryan, C.: Genetic code degeneracy: implications for grammatical evolution and beyond. In: Proceedings of the 5th European Conference on Artificial Life, (1999).

    Google Scholar 

  18. Provine, W.B.: Sewall Wright and Evolutionary Biology. The University of ChicagoPress, Chicago (1986).

    Google Scholar 

  19. Schwefel, H.P.: Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik. Diplomarbeit, Technische Universitat Berlin, 1965.

    Google Scholar 

  20. Vassilev, V.K., Miller J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Proceedings of the 3rd International Conference on Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, Vol. 1801, Springer-Verlag, Berlin (2000) 252–263.

    Chapter  Google Scholar 

  21. Yu, T. and Bentley, P.: Methods to evolve legal phenotypes. In: Proceedings of the Fifth International Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer Science, Vol. 1498, Springer-Verlag, Berlin (1998) 280–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, T., Miller, J. (2001). Neutrality and the Evolvability of Boolean Function Landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45355-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41899-3

  • Online ISBN: 978-3-540-45355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics