Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Randomness-Optimal Characterization of Two NP Proof Systems

  • Conference paper
  • First Online:
Randomization and Approximation Techniques in Computer Science (RANDOM 2002)

Abstract

We investigate quantitative aspects of randomness in two types of proof systems for NP: two-round public-coin witness-indistinguishable proof systems and non-interactive zero-knowledge proof systems. Our main results are the following:

  • • if NP has a 2-round public-coin witness-indistinguishable proof system then it has one using Θx(n + log(1/s)) random bits,

  • • if NP has a non-interactive zero-knowledge proof system then it has one using Θ(n +log(1/s)) random bits,

  • where s is the soundness error, n the length of the input, and ∈ can be any constant < 0. These results only assume that NP ≠ average-BPP. As a consequence, assuming the existence of one-way functions, both classes of proof systems are characterized by the same randomness complexity as BPP algorithms.

In order to achieve these results, we formulate and investigate the problem of randomness-efficient error reduction for two-round public-coin witness-indistinguishable proofs and improve some of our previous results in [13] on randomness-efficient non-interactive zero-knowledge proofs.

Part of this work done while visiting Università di Salerno.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Ajtai, J. Komlos, and E. Szemeredi, Deterministic Simulation in Logspace, Proc. of STOC 87.

    Google Scholar 

  2. M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in Interactive Proof Systems, in Proc. of FOCS 90, pp. 563–572.

    Google Scholar 

  3. M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson, Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions, Proc. of STOC 88.

    Google Scholar 

  4. M. Blum, Coin Flipping by Telephone, Proc. IEEE Spring COMPCOM (1982), 133–137.

    Google Scholar 

  5. M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge, SIAM Jou. on Computing, vol. 20, no. 6, Dec 1991, pp. 1084–1118.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Applications, Proc. of STOC 88.

    Google Scholar 

  7. M. Blum and S. Micali, How to Generate Cryptographically Strong Sequence of Pseudo-Random Bits, SIAM J. on Computing, vol. 13, no. 4, 1984, pp. 850–864.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Boyar and R. Peralta, Short Discreet Proofs, Proc. of EUROCRYPT 96.

    Google Scholar 

  9. B. Chor and O. Goldreich, On the Power of Two-Point Based Sampling, Journal of Complexity, vol. 5, pp. 96–106, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Cohen and A. Wigderson, Dispersers, Deterministic Amplification and Weak Random Sources, Proc. of FOCS 89.

    Google Scholar 

  11. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai, Robust Non-Interactive Zero Knowledge, in Proc. of CRYPTO 2001.

    Google Scholar 

  12. A. De Santis, G. Di Crescenzo, and G. Persiano, Randomness-Efficient Non-Interactive Zero-Knowledge, Proc. of ICALP 97.

    Google Scholar 

  13. A. De Santis, G. Di Crescenzo, and G. Persiano, Non-Interactive Zero-Knowledge: A Low-Randomness Characterization of NP, Proc. of ICALP 99.

    Google Scholar 

  14. A. De Santis and M. Yung, Cryptographic applications of the meta-proof and the many-prover systems, Proc. of CRYPTO 90.

    Google Scholar 

  15. C. Dwork and M. Naor, Zaps and Their Applications, Proc. of FOCS 2000.

    Google Scholar 

  16. U. Feige, S. Goldwasser, L. Lovasz, S. Safra and M. Szegedy, Approximating Clique is Almost NP-complete, Proc. of FOCS 91.

    Google Scholar 

  17. U. Feige, D. Lapidot, and A. Shamir, Multiple Non-Interactive Zero-Know ledge Proofs Under General Assumptions, SIAM Jou. on Computing, 29(1), 1999, p. 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  18. U. Feige and A. Shamir, Witness-Indistinguishable and Witness-Hiding Protocols, Proc. of STOC 90.

    Google Scholar 

  19. O. Gabber and Z. Galil, Explicit Constructions of Linear Sized Superconcentrators, Journal of Computer and System Sciences, vol. 22, pp. 407–420, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  20. Gillman, A Chernoff Bound for Random Walks on Expanders, Proc. of STOC 93.

    Google Scholar 

  21. M. Garey e D. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979.

    Google Scholar 

  22. O. Goldreich and Y. Oren, Definitions and Properties of Zero-Knowledge Proof Systems, Journal of Cryptology, vol. 7, 1994, pp. 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Goldwasser, and S. Micali, Probabilistic Encryption, in Journal of Computer and System Sciences, vol. 28, n. 2, 1984, pp. 270–299.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof-Systems, SIAM J. on Computing, vol. 18, n. 1, 1989.

    Google Scholar 

  25. J. Hastad, R. Impagliazzo, L. Levin and M. Luby, Construction of A Pseudo-Random Generator from Any One-Way Function, SIAM Jou. on Computing, vol. 28, n. 4, pp. 1364–1396.

    Google Scholar 

  26. R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proc. of FOCS 89.

    Google Scholar 

  27. J. Kilian, On the complexity of bounded-interaction and non-interactive zero-knowledge proofs, Proc. of FOCS 94.

    Google Scholar 

  28. R. Karp, N. Pippenger, and M. Sipser, Expanders, Randomness, or Time vs. Space, in Proc. of 1st Structures of Complexity Theory, 1986.

    Google Scholar 

  29. J. Kilian, and E. Petrank, An efficient zero-knowledge proof system for NP under general assumptions, Journal of Cryptology, vol. 11, n. 1, pp. 1–28.

    Google Scholar 

  30. A. Lubotzky, R. Phillips, and P. Sarnak, Explicit Expanders and the Ramanujan Conjectures, Proc. of STOC 86.

    Google Scholar 

  31. M. Naor, Bit Commitment from Pseudo-Randomness, Proc. of CRYPTO 89.

    Google Scholar 

  32. R. Ostrovsky and A. Wigderson, One-way Functions are Essential for Non-Trivial Zero-knowledge, in Proc. of the 2nd Israel Symposium on Theory of Computing and Systems (ISTCS-93).

    Google Scholar 

  33. N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica, 11, pp. 63–70, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  34. O. Reingold, S. Vadhan and A. Wigderson, Entropy Waves, The Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors, in Proc. of FOCS 2000.

    Google Scholar 

  35. M. Sipser, A Complexity-Theoretic Aproach to Randomness, in Proc. of STOC 1983.

    Google Scholar 

  36. A. Sahai, Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security, in Proc. of FOCS 1999.

    Google Scholar 

  37. D. Zuckerman, Randomness-Optimal Oblivious Sampling, in Proc. of STOC 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Santis, A., Di Crescenzo, G., Persiano, G. (2002). Randomness-Optimal Characterization of Two NP Proof Systems. In: Rolim, J.D.P., Vadhan, S. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 2002. Lecture Notes in Computer Science, vol 2483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45726-7_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45726-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44147-2

  • Online ISBN: 978-3-540-45726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics