Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Extraction of Hidden Causes

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2002 (ICANN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Included in the following conference series:

Abstract

This paper presents a new framework extending previous work on multiple cause mixture models. We search for an optimal neural network codification of a given set of input patterns, which implies hidden cause extraction and redundancy elimination leading to a factorial code. We propose a new entropy measure whose maximization leads to both maximum information transmission and independence of internal representations for factorial input spaces in the absence of noise. No extra assumptions are needed, in contrast with previous models in which some information about the input space, such as the number of generators, must be known a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deco, G., Obradovic, D.: An information theoretic approach to neural computing (Springer-Verlag, New York, 1996) 65–107

    MATH  Google Scholar 

  2. Barlow, H.B., Kaushal, T.P., Mitchison, G.J.: Finding minimum entropy codes. Neural Computation 1 (1989) 412–423

    Article  Google Scholar 

  3. Földiäk, P.: Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics 64 (1990) 165–170

    Article  Google Scholar 

  4. Saund, E.: A multiple cause mixture model for unsupervised learning. Neural Computation 7 (1995) 51–71

    Article  Google Scholar 

  5. Dayan, P., Zemel, R.S.: Competition and multiple cause models. Neural Computation 7 (1995) 565–579

    Article  Google Scholar 

  6. O’Reilly, R.C.: Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. Neural Computation 13 (2001) 1199–1241

    Article  MATH  Google Scholar 

  7. Levine, D.: Users guide to the PGAPack parallel genetic algorithm library (1996) http://www-fp.mcs.anl.gov/CCST/research/reportspre1998/compbio/stalk /pgapack.html

  8. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.: The wake-sleep algorithm for unsupervised Neural Networks. Science 268 (1995) 1158–1161

    Article  Google Scholar 

  9. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999) 788–91

    Article  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (1996) 607–609

    Article  Google Scholar 

  11. Roweiss, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323–2326

    Article  Google Scholar 

  12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319–2323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lago-Fernández, L.F., Corbacho, F. (2002). Optimal Extraction of Hidden Causes. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_103

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_103

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics