Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Analy. Mach. Intell. 12(10), 993–1001 (1990)
Article
Google Scholar
Schapire R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
Google Scholar
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G. Touretzky, D.S. Leen T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 231–238. MIT, Cambridge, MA , (1995)
Google Scholar
Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)
Article
MATH
Google Scholar
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to Boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Article
MATH
MathSciNet
Google Scholar
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
MATH
MathSciNet
Google Scholar
Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–260 (1992)
Article
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Article
MATH
Google Scholar
Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, Boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)
Article
Google Scholar
Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Intell. Res. 10, 271–289 (1999)
MATH
Google Scholar
Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)
MATH
Google Scholar
Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)
Article
MATH
MathSciNet
Google Scholar
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitionings. J. Mach. Learn. Res. 3, 583–617 (2002)
Article
MathSciNet
Google Scholar
Dietterich, T.G.: Machine learning research: Four current directions. AI Mag. 18(4), 97–136 (1997)
Google Scholar
Zhou, Z.H., Jiang, Y., Chen, S.F.: Extracting symbolic rules from trained neural network ensembles.. AI Commun. 16(1), 3–15 (2003)
Google Scholar