Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Solving crimes is a complex task and requires a lot of experience. Data mining can be used to model crime detection problems. The idea here is to try to capture years of human experience into computer models via data mining. Crimes are a social nuisance and cost our society dearly in several ways. Any research that can help in solving crimes faster will pay for itself. According to Los Angeles Police Department, about 10% of the criminals commit about 50% of the crimes. Here we look at use of clustering algorithm for a data mining approach to help detect the crimes patterns and speed up the process of solving crime. We will look at k-means clustering with some enhancements to aid in the process of identification of crime patterns. We applied these techniques to real crime data from a sheriff’s office and validated our results. We also used semi-supervised learning technique here for knowledge discovery from the crime records and to help increase the predictive accuracy. Our major contribution is the development of a weighting scheme for attributes, to deal with limitations of various out of the box clustering tools and techniques. This easy to implement data mining framework works with the geo-spatial plot of crime and helps to improve the productivity of the detectives and other law enforcement officers. It can also be applied for counter terrorism for homeland security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hsinchun Chen, Wingyan Chung, Yi Qin, Michael Chau, Jennifer Jie Xu, Gang Wang, Rong Zheng, Homa Atabakhsh, “Crime Data Mining: An Overview and Case Studies”, AI Lab, University of Arizona, proceedings National Conference on Digital Government Research, 2003, available at: http://ai.bpa.arizona.edu/

    Google Scholar 

  2. Hsinchun Chen, Wingyan Chung, Yi Qin, Michael Chau, Jennifer Jie Xu, Gang Wang, Rong Zheng, Homa Atabakhsh, “Crime Data Mining: A General Framework and Some Examples”, IEEE Computer Society April 2004.

    Google Scholar 

  3. C McCue, “Using Data Mining to Predict and Prevent Violent Crimes”, available at: http://www.spss.com/dirvideo/richmond.htm?source=dmpage&zone=rtsidebar

    Google Scholar 

  4. Whitepaper, “Oracle’s Integration Hub For Justice And Public Safety”, Oracle Corp. 2004, available at: http://www.oracle.com/industries/government/IntegrationHub_Justice.pdf

    Google Scholar 

  5. John Zeleznikow, “Using data mining techniques to detect criminal networks” presented at Australian Institute of Criminology April 2005, available at: http://www.aic.gov.au/conferences/occasional/2005-04-zeleznikow.html

    Google Scholar 

  6. Shyam Varan Nath, “Crime Patterns Detection Using Data Mining Framework”, Knowledge Discovery, Data Mining, and Machine Learning Proceedings, University of Hildesheim, Germany, Oct 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Nath, S.V. (2007). Crime Data Mining. In: Elleithy, K. (eds) Advances and Innovations in Systems, Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6264-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6264-3_70

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6263-6

  • Online ISBN: 978-1-4020-6264-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics